UNIVERSITA DEGLI STUDI DI MILANO
Facolta di scienze e tecnologie
Laurea Magistrale in Informatica

STORYGEN Al : GENERAZIONE DI NARRATIVA
INTERATTIVA

Relatore: Prof. Laura Anna Ripamonti

Co-relatore: Dott. Marco Ligabue

Autore:
Federico Maglione
Numero matricola: 962587

Anno accademico 2024-2025

i

Indice

I [z . l 1
(1.1 Introduzione generale| 1
(L2 Stato dell’arte e motivazionil 4
(1.3 Architettura generale del sistemal 6
1.4 Obiettividel lavoral 9

[1.4.1 Obiettivi di ricerca e sperimentazione| 9
(1.4.2 Obiettivi implementativi 9
[1.4.3 Obiettivi qualitativi e progettuali| 10
[1.4.4 Sintesi finale degli obiettivif. 10
(Lo Risultati e feedbackl oo 11
(.5b.1 Conclusionel 12

2__Contesto e stato dell’artel 13

[2.1 Lo storytelling: definizione e ruolo nella comunicazione umana] 13
[2.1.1 Aristotele e le origini della teoria della narratival 14
[2.1.2 Da Campbell a Propp: archetipi e strutture ricorrenti 14

2.2 la narrazione videoludica nella letteratura scientifical 15

[2.3 Evoluzione dello storytelling nei videogiochi| 16
[2.3.1 Le origini: narrazione minimale (anni '70-'80)| 16
[2.3.2 Gli anni '90: I'ingresso della narrativa cinematografical] 17
[2.3.3 La maturita narrativa dei 2000: interattivita, scelte e moralita] 17
[2.3.4 2010-2020: la tusione tra gameplay e narrazione| 18
[2.3.5 Oggi: mondi narrativi complessi e sistemi intelligenti| 19

[3 Metodologie e tecnologie utilizzate] 21

[3.1 Metodologie attuali per generare storie videoludichel 21
[3.1.1 Concept narrativo e definizione della visione| 21
BL2 1 ——] = Bl - = 22
[3.1.3 Il Narrative Design Document| 22
[3.1.4 Strutture ramificate e gestione della complessita narratival] . . 23
[3.1.5 Iterazione, playtesting e riscrittura] 23
[3.1.6 Scalabilita narrativa e complessita produttiva] 23

iii

B2

La nuova frontiera: |'intelligenza artificiale nello storytelling videoludico| 24

[3.2.1 Al come strumento creativo per autori e game designer| 24
[3.2.2 Strumenti ibridi: combinare strutture formali e Al generatival. 25

[3.3 Introduzione al sistema sviluppatol. 26
[3.4 Architettura generale del sistema| 27
[3.5 Backend del sistema: tecnologie e metodologia di funzionamento| . . . 29
[3.5.1 Tecnologie utilizzate] 29
[3.5.2 Gestione delle risorse narrative strutturatel 30
[3.5.3 Sistema di embedding e model recognition|. 31
[3.5.4 Pipeline narrativa multi-step| 31
[3.5.5 Sistema a thread e gestione asincrona dei job|. 31
[3.5.6 Comunicazione tramite REST APIl 32

[3.6 Frontend: Unreal Engine e interfaccia utente| 33
[3.6.1 Tecnologie utilizzate in Unreal Enginel 33
[3.6.2 Comunicazione con il backend tramite REST APIl 33
[3.6.3 Interfaccia utente (UL/UX)[. 33
[3.6.4 Visualizzazione dei risultatil 35

[3.7 Modelli Al e strategie di prompting| 36
B.7.1 Modello AT utilizzatal 36
[3.7.2 Prompt engineering| 36
[3.7.3 Controllo del contesto e gestione della coerenzal 37
[3.7.4 Ruolo del modello Al nel sistemal 38

[4 Analisi del problema e del design del sistemal 39
[4.1 Introduzione al problemal. 39
[4.2 Complessita narrativa e struttura del grato 41
[4.2.1 Grafo semplice vs grato complesso| 43
[4.2.2 Impatto della complessita sulla coerenza narratival 44

[4.3 Difficolta nella generazione di storie complesse e logicamente coerenti| 45
[4.3.1 Caratterizzazione e stabilita dei personaggil 45
[4.3.2 Scalabilita della narrazionef. 45
[4.3.3 Sensibilita del modello al promptingl 45
[4.3.4 Difterenziazione delle storie generatel 46

[4.4 Limitazioni tecnologiche dei modelli Al generativil 47
[4.4.1 Limiti dei LLM nel ragionamento a lungo termine| 47
[4.4.2 Lentezza e costi computazionalil 47
[4.4.3 Necessita del sistema a step| 47
[4.4.4 Dipendenza dalle tecnologie disponibili| 48

[4.5 Problematiche del promptingl 49
[4.5.1 Sensibilita dei modelli al prompt| 49
[4.5.2 Differenziazione degli aspetti narrativi 49
[4.5.3 Impatto sul design dell'intero sistemal 50

iv

[4.6.1 Il ruolo dei validatori nella gestione della coerenzal 51

M. Limiti di utilizzo del sistemalo oL 52
[4.7.1 Focalizzazione sui videogiochi story-driven| 52
[4.7.2 Dipendenza dalla qualita dei documenti di supportol. 52

[4.8 Complessita e prestazioni del sistema] 53
[4.8.1 Complessita computazionale delle pipeline multi-step| 53
[4.8.2 Responsivita del sistema e percezione dell'utente|. 53

[4.9 Necessita della suddivisione in step| 54
[4.9.1 Complessita crescente e impossibilita della generazione mono-

[Iitical 54
4.9.2 Controllo della narrazione a livelli diversil 54
[4.9.3 Riduzione degli errori tramite generazione progressival 54
[4.9.4 Maggiore flessibilita e adattabilita 55
[4.9.5 Riduzione del carico cognitivo del modello AIl 55

[> Implementazione del sistema) 57

b1 Introduzionel 57
[>.2 Descrizione generale del sistema) 58
b21 Backend 58
(.22 Frontendl 58
[>.3 Diagramma dell’architettura del sistema) 59
H.3.1 [ivello Backend 0L 61
H.3.2 [ivello Frontend|. o oo 61
b33 Flussodeidatil 62
[>.4 Implementazione dello Step 1: Generazione della struttura narratival . 62
[.4.1 Come viene generata una struttura narratival. 62
[>.4.2 Logica implementativa e flusso operativo| 63
[5.4.3 Struttura dei file narrativi: Story, Characters e Cards| 64
[5.4.4 Costruzione del prompt|. 71
[5.4.5 Il ruolo del livello di complessital. 72
[>.4.6 Struttura a tre atti e tipologie di nodi narrativi 74
[>.4.7 (Generazione della struttura narrativa: funzionamento, logica
[eoutpuf] 78
[5.5 Implementazione dello Step 2: Generazione dei capitoli narrativi| . . . 81
[5.5.1 Logica implementatival 81
[5.5.2 Costruzione del prompt|. 82

[>.5.3 Utilizzo della NAP Policy: Encounter Plan e Chapter Adapt| . 84
(5.6 Implementazione dello Step 3: Generazione della storia dettagliatal . . 89

[5.6.1 Logica implementatival 89
[5.6.2 Costruzione del prompt|. 90
[5.6.3 Beat narrativi e ruolo degli encounter{. 93

[5.7 Implementazione dello Step 4: validazione e correzione automatical . .

[>.7.1 Logica implementatival

b2 Tabel Validatod

[5.7.4 File di report e risultato finale|

[>.8 Implementazione dello step 5: Generazione sintesi|

[>.8.1 Logica implementativa e funzionamento|.

[5.8.2 Costruzione del prompt|.

[0.8.3 Descrizione output|

[.9 Tmplementazione UI/UX Unreal Engine|.

[5.9.1 Struttura generale del front-end|

[5.9.2 Editor Utility Widget principalef

[5.9.3 Interfaccia di generazione della storia]

5.9.4 Pannello Storzesl

[5.9.5 Widget di riga e interazione|

[6.9.6 Visualizzazione dei JSONl

[5.9.7 Gestione del ciclo di vita e delle operazioni asincrone|

[6 Analisi dei feedback e valutazione sperimentale del sistemal

[6.2 Profilo dei partecipantil L

(0.3 Usabilita dell'interfaccia e flusso di utilizzol

6.4 Qualita percepita delle storie generate|

[6.5 Affidabilita dello strumento come supporto creativo|

[6.6 Integrazione in una pipeline reale di sviluppo|.

6.7 Criticita emerse e limiti del sistemal

[7 Conclusioni finali e sviluppi futuri

[71 Conclusioni finalil

[7.2 Sviluppi futuril

(8 Appendice]

vi

96
96
96
98
99
99
100
100
100
103
105
105
106
107
108
108
108

111
111
112
113
115
118
119
121
122
122

125
125
126

129

131

Capitolo 1

Introduzione e riassunto

1.1 Introduzione generale

Negli ultimi anni il settore videoludico ha conosciuto un’evoluzione significativa,
non soltanto dal punto di vista tecnico e grafico, ma anche, e soprattutto, nella
componente narrativa. I videogiochi contemporanei si configurano sempre piu come
esperienze interattive complesse, nelle quali la costruzione della trama e lo svilup-
po dei personaggi assumono un ruolo centrale nel determinare l'immersione e il
coinvolgimento del giocatore [1I, 2].

La narrazione interattiva, infatti, & divenuta uno degli elementi distintivi della
produzione videoludica moderna, trasformando il videogioco da mero intrattenimen-
to a mezzo espressivo e culturale capace di generare emozioni, riflessioni e parteci-
pazione attiva [2]. In questo contesto, 'applicazione dell’intelligenza artificiale alla
generazione automatica di storie videoludiche rappresenta una delle frontiere piu in-
novative della ricerca contemporanea. L’obiettivo non e piu soltanto quello di creare
mondi realistici o personaggi credibili, ma di generare in modo dinamico narrazio-
ni coerenti, adattive e interattive, in grado di reagire alle scelte del giocatore e di
adattarsi ai contesti ludici in cui sono inserite [3].

Il progetto qui presentato nasce con l'intento di sviluppare un sistema per la
generazione automatica di storie videoludiche attraverso 1'utilizzo di modelli di in-
telligenza artificiale generativa. Tale sistema si pone come strumento di supporto al
processo creativo di game designer e narrative designer, fornendo un aiuto concreto
nelle fasi di brainstorming, strutturazione della trama e definizione dei legami tra
personaggi ed eventi.

Il sistema trae ispirazione dai principi e dalla struttura concettuale del progetto
tesi GHOST — A Ghost Story Writer [4], un sistema che permetteva la generazione
semi-automatica di storie interattive mediante la manipolazione di nodi narrativi.
Tuttavia, rispetto a GHOST, la soluzione proposta introduce una componente di
intelligenza artificiale generativa, capace di analizzare, adattare e creare contenuti
narrativi dinamici sulla base di prompt strutturati, documenti di riferimento teorico
e database narrativi personalizzati. Questa integrazione consente di superare i limiti
di rigidita e ripetitivita dei modelli precedenti, offrendo uno strumento piu flessibile,
creativo e adatto ai contesti produttivi moderni.

A livello metodologico, il progetto si € avvalso di diversi riferimenti teorici e
strumenti di supporto alla scrittura narrativa, che ne hanno influenzato la struttura
e i principi progettuali:

o Plotto: The Master Book of All Plots di William Wallace Cook [5], un
classico della narrativa che propone un sistema di situazioni drammatiche, utile
come base per la definizione di trame e conflitti ricorrenti. Questo approccio
ha ispirato la creazione di un archivio strutturato di “basi narrative” da cui
I'TA puo attingere nella fase di generazione.

o Periodic Table of Storytelling, uno strumento ideato dalla community di
TVTropes [6], che analizza e classifica i tropi narrativi pitt comuni in film, serie
TV, libri e videogiochi. Tale modello ha fornito la base per la rappresentazio-
ne dei nodi narrativi e per la loro organizzazione in categorie funzionali (es.
personaggi, eventi, ambienti, oggetti).

e Slay the Dragon: Writing Great Video Games di Robert Denton
Bryant e Keith Giglio [1], testo di riferimento nel campo del game narrati-
ve design, utilizzato nella definizione degli elementi narrativi fondamentali del
sistema, come gli archi drammatici, le strutture a piu atti e la correlazione tra
gameplay e storytelling.

Grazie a questi riferimenti, il sistema sviluppato si colloca a meta strada tra la
tradizionale costruzione manuale della trama e le piu recenti tecniche di generazione
narrativa automatica basate su intelligenza artificiale, con 'obiettivo di creare uno
strumento pratico, creativo e teoricamente fondato per la progettazione di storie
videoludiche.

— The Periodic Table
of Storytelling

laws, plots
— D preview window [e you bocking ads? et preview layous

AR | iy plot
modifiers _ Devices

R e
Srs [Anv | PhlL
goma | s | s 23S +—Identifier
= ;I:reeAct — Trope Name
i ructure
M‘Eq ..EE.I,. I,E (— Popularity in kilowicks o
|t | ke (thousands of links to Production Reactions
0| i 4] its page within the wiki) [= 5
Rey | CL2 (Wav Can|Fan
‘RecycledIN. Cr“: HandWave. Canon Fanon
Metatropes
] 39 i 3] [s %
X | Ria | Dx T Sho | Sus
XMeets Y n::; B::: Trope. ‘ShoutOut. i
& I N
Aa |Dae| Ass Ls [Tru| Tt | Fri
MagcAls | Darkerand | AssPul Lampshade | Trthin | TakeThat | FidgeLogic.
LA e Heroes. Villains e
16| 58] 34| 83] 17| 24 2 30| 64] 12 19] 21
Ivc [Scw| lac | H | Kni |Bbw Rch [Emp| Jt |Rur|Res| Et
m-a Mind Screw sfn:m The Heo l;:: z_ Archenemy | The Empre -l;':d m Crcal ?
= 20] 22| 13] 58| ‘_'n 74] 28] 40| 69| 15| 13] 18]
Aws|Aod | Ah [Neo| Tp i|Dra| Av | Sv | Lr [Vam|Dlp
(R M [ot | |G| | T | AR | S|]| L
F B s e S R
Cal |[Bwb|Xan| Ih | Ag |Ace Law|Mol | Vp | Old | Anp |Wob|Me
CalTo | Fansenvice | Xanatos | IdotHe | ActonGil | TheAce g Amoral ‘The Mole: Vilin | OldestOnes | Anthvopc | WriterOn | Memetc
Adventure. Gambit Protagonist | inthe Book | Principle Board Mutation
E G .
Rq | Cry [Bdh| Sh | Pg | Cap Vir | 4te | Roc | Con | Xm |Wog
i ‘The Captain ‘Executve | Wordof God

Pedemgton | Tear erker | BigDamn | Superhero | Phocky Gl Obstructve | The Vinus | ForThe Evz | RuleofCool | Lawol
Heroes. Conservation|

£ ET BT R : G |
Hj |Ang| Pet | Kh | Det | Gun Eld | Lol | Rof | Lah | Rad | Mst
o el | el e

B 5 il S = i
Stw | Jts | Kik | Gh | Gb | Ir 1wa| Fai |Rod| Md | Dh | Sqi
Savingthe o GuleHero | Genius Intrepid u’:- YouHave Rule of Moral | Development| Squick
Word Shark Bruiser Reporer FailedMe Drama | Dissonance Hell

E S G I .
Tfc | Gtb [Hrz | Th |5ma| Ind i | Cce | Cat | 4wl | Tbl [Sbn | Fwr
MM Growingthe | MoralEvent | TragicHero | FiveMan | Adventurer te Knight | CreepyChid| Comupt | Right-Hand | The Fourth | Parodic Table | ﬂ Freud Was
Crime Beard. Horizon Band Corporate. Cat wal ofthe | Thel Right

Execue Eements

Having fun? Get this table as a poster for writing inspiration!
A portion of the proceeds go to fund the TVTropes servers.

Periodic Table of Storytelling ©2013 by James R. Harris.
PO

ALL THESE TROPES AND TWENTY THOUSAND MORE ARE DETAILED ON tv&ro PESORG

Figura 1: Periodic table of Storytelling

1.2 Stato dell’arte e motivazioni

Negli ultimi anni, lo storytelling nei videogiochi ha subito una profonda trasforma-
zione, passando da semplice elemento accessorio a componente centrale del game
design. Le produzioni contemporanee pongono crescente attenzione alla costruzione
di trame complesse, personaggi psicologicamente coerenti e universi narrativi condi-
visi, elementi che contribuiscono in modo determinante alla qualita dell’esperienza
di gioco 1 2]. Esempi come The Last of Us, Disco Elysium o Baldur’s Gate di-
mostrano come la scrittura e la progettazione narrativa possano rappresentare un
fattore di distinzione e di valore culturale per il prodotto videoludico.

Parallelamente a questa evoluzione, la ricerca accademica ha iniziato a esplorare
strumenti e modelli per I’automazione della generazione narrativa, con ’obiettivo di
affiancare il designer nelle fasi piu complesse del processo creativo. Progetti come
GHOST — A Ghost Story Writer hanno introdotto 'idea di rappresentare la narra-
zione attraverso nodi logici interconnessi, ognuno dei quali descrive un elemento con
una funzione narrativa specifica (personaggio, evento, luogo, oggetto, ecc.) [4]. Tale
approccio ha dimostrato la possibilita di modellare una storia come rete semantica
di relazioni, superando la linearita tipica della narrazione tradizionale.

Altri strumenti e riferimenti teorici hanno fornito ispirazione significativa. Tra
questi, Plotto: The Master Book of All Plots di William Wallace Cook [5] ¢ con-
siderato uno dei primi tentativi sistematici di classificazione delle trame narrative.
Il volume propone una struttura combinata di situazioni drammatiche e relazioni
umane, concepita per supportare lo scrittore nella generazione di nuovi intrecci. Nel
contesto di questo progetto, Plotto ha ispirato I'idea di un archivio di strutture
narrative basilari utilizzabili come base per la generazione automatica delle storie.

Un ulteriore riferimento teorico ¢ la Periodic Table of Storytelling, sviluppata
dalla community TVTropes [6], che raccoglie e organizza centinaia di tropi narrativi,
ossia modelli ricorrenti di situazioni, personaggi o dinamiche drammatiche impiegati
nei media contemporanei. Tale struttura e stata utilizzata come base concettuale
per la rappresentazione dei nodi narrativi nel sistema, consentendo di associare a
ciascun nodo una funzione drammatica, un tema e un archetipo riconoscibile.

Infine, il testo Slay the Dragon: Writing Great Video Games di Robert Denton
Bryant e Keith Giglio [I] rappresenta il principale riferimento per la definizione degli
elementi narrativi videoludici. Il volume affronta la narrazione interattiva dal punto
di vista dello screenwriting adattato al gameplay, ponendo 1’accento su concetti
come player agency, emotional arc e struttura del gioco. In particolare, le nozioni di
sequenza narrativa, arco dell’eroe e struttura a piu atti sono state riprese e adattate
all’interno del sistema sviluppato per garantire coerenza con i principi del game
narrative design moderno.

Questi contributi teorici e pratici hanno evidenziato la necessita di strumenti
capaci di coniugare complessita narrativa e automazione intelligente, consentendo
di generare storie non soltanto corrette dal punto di vista sintattico, ma anche

4

coerenti, significative e contestualmente rilevanti. L’introduzione dei modelli lin-
guistici di grandi dimensioni (Large Language Models, LLM), come GPT, Gemini o
Claude, ha aperto nuove prospettive in questa direzione, permettendo di combinare
apprendimento semantico, ragionamento narrativo e creativita generativa.

Il progetto presentato in questa tesi nasce dunque dalla volonta di unire la ri-
gidita strutturale del modello GHOST alla flessibilita linguistica e semantica del-
I'intelligenza artificiale generativa, con l'obiettivo di costruire un sistema capace

di:

o generare storie videoludiche coerenti e articolate, basate su modelli narrativi
consolidati;

o supportare il game designer nella fase di ideazione e sviluppo;

« adattarsi a differenti generi, complessita e stili narrativi.

In questa prospettiva, I'uso dell’intelligenza artificiale non sostituisce la creativita
umana, ma la amplifica, fornendo un ambiente di lavoro ibrido in cui autore e
macchina cooperano per la costruzione di esperienze narrative sempre piu ricche,
dinamiche e personalizzabili [].

1.3 Architettura generale del sistema

L’intero sistema e stato progettato secondo un’architettura client—server, concepita
per garantire modularita, scalabilita e una chiara separazione delle responsabilita tra
le componenti [7, 8]. II server (backend), sviluppato in Python, gestisce I’esecuzione
sequenziale dei quattro step fondamentali del processo di generazione narrativa e
mette a disposizione un set di servizi RESTful per I'interazione con il client [7]. Il
client (frontend), realizzato in Unreal Engine, funge da interfaccia utente e consente
di selezionare lo step desiderato, inviare richieste al server, visualizzare i risultati ot-
tenuti e analizzare in modo interattivo le storie generate. L’architettura complessiva
si articola dunque in due componenti principali.

Backend — Generazione e validazione della storia: Il backend costituisce la
base logica del sistema e si articola in quattro fasi principali, ognuna delle quali &
gestita da un modulo Python dedicato. Ogni fase corrisponde a uno step specifico
del flusso narrativo e viene eseguita in modo sequenziale o su richiesta, seguendo
un modello di pipeline modulare frequentemente adottato nei sistemi di generazione
automatica dei contenuti.

1. Step 1 — Generazione della struttura narrativa:

In questa fase, attraverso 'utilizzo di un modello di intelligenza artificiale ge-
nerativa (Gemini 2.5 Flash), il sistema elabora una struttura narrativa di base,
definendo nodi, connessioni e relazioni tra eventi, personaggi e temi principali.
Il risultato viene salvato in formato JSON e successivamente visualizzato come
grafo narrativo, traducendo la struttura logica in una rappresentazione grafica
leggibile e analizzabile. Questo step costituisce il fondamento su cui si basa-
no tutte le fasi successive, in quanto definisce 'ossatura narrativa dell’intera
storia.

2. Step 2 — Generazione dei capitoli narrativi:
A partire dalla struttura generata, il sistema suddivide la narrazione in capitoli
coerenti, ciascuno rappresentante una sotto-sequenza narrativa autonoma ma
interconnessa con le altre, in linea con i principi della segmentazione narrativa
videoludica [I]. Ogni capitolo include obiettivi narrativi, spazi e ambienti di
riferimento, opposizioni e conflitti, nonché adattamenti di gameplay e scelte
dinamiche, fungendo da ponte tra struttura astratta e contenuto giocabile.

In questa fase, il sistema utilizza una base informativa strutturata per estrarre
elementi semantici e contestuali, garantendo coerenza con la lore e le mecca-
niche narrative definite.

3. Step 3 — Generazione della storia dettagliata:
In questo step, il sistema redige la narrazione testuale completa di ogni capi-
tolo, integrando descrizioni, dialoghi, dinamiche di causa—effetto e transizioni

emotive tra le scene. Si tratta della fase in cui la struttura astratta pren-
de forma concreta, diventando una storia videoludica fruibile e coerente con
i principi del game narrative design [2]. L’output viene prodotto in formato
JSON e puo essere direttamente analizzato o modificato dall’utente.

4. Step 4 — Validazione e correzione automatica:
L’ultima fase e dedicata alla verifica e convalida della coerenza narrativa. La
storia generata viene analizzata da due moduli distinti:

o Label Validator, che controlla la coerenza semantica e terminologica di
personaggi, eventi, temi e capitoli;

o Flow Validator, che verifica la continuita narrativa tra i capitoli, indi-
viduando eventuali discontinuita o contraddizioni logiche.

Insieme, questi due moduli garantiscono che la storia finale rispetti i principi
di coerenza, progressione e plausibilita narrativa, riducendo errori tipici dei sistemi
generativi non guidati. Il backend e orchestrato da un modulo principale che gestisce
i job in esecuzione, la comunicazione tra gli step e la serializzazione dei risultati.
L’intero processo e stato concepito per essere scalabile e asincrono, consentendo
I’esecuzione di piu richieste contemporaneamente e la gestione di task complessi in
background [§].

Frontend — Interfaccia utente e interazione con il sistema: Il frontend,
sviluppato in Unreal Engine, rappresenta la componente visiva e interattiva del si-
stema. Attraverso un widget dedicato, I'utente puo selezionare lo step di generazione
o validazione desiderato, visualizzare in tempo reale i risultati prodotti dal server,
esplorare graficamente la struttura narrativa in forma di grafo, leggere e analizzare
la storia generata per ciascun capitolo e generare una sintesi narrativa automatica
della storia complessiva. L’interfaccia e stata progettata con ’obiettivo di mantene-
re un flusso di lavoro fluido e intuitivo, riducendo al minimo la complessita tecnica
per 'utente finale, in linea con le best practice di progettazione degli strumenti di
authoring interattivo.

Embedding System

)Cards.]sun - Characters.json - Story.json

Job & Thread Manager

Step 1- Structure
- - - RESTAPILayer - - - O Lo

l

X

Al Model Layer
Step 2 - Chapters
Process

Gemini 2.5 Flash

Model

Step 3 - Stary
Process

1
1
1
1
1
1
i
i
(S T o e)
|

Step 4 - Validation
Process

0{

A

~ = -RESTAPILayer — — — - — — — — — B] — — — — — — Narrative Multi-Step Pipeline

Figura 2: Overview architettura

1.4 Obiettivi del lavoro

L’obiettivo principale di questo lavoro e la progettazione e realizzazione di un sistema
modulare e scalabile per la generazione automatica di storie videoludiche, capace di
combinare la struttura narrativa tradizionale con le potenzialita dell’intelligenza
artificiale generativa. Il progetto mira a creare uno strumento di supporto creativo
per il game designer e il narrative designer, in grado di automatizzare parte del
processo di ideazione e sviluppo della trama, mantenendo al tempo stesso un elevato
livello di coerenza narrativa, adattabilita e controllo autoriale.

A differenza dei sistemi di generazione narrativa puramente procedurali, basati su
regole statiche o schemi predefiniti, il sistema proposto adotta un approccio ibrido,
in cui:

la struttura narrativa di base ¢ definita secondo modelli logici derivati da
GHOST e dalla Periodic Table of Storytelling [4,],

la creazione dei contenuti testuali ¢ affidata a un modello di intelligenza arti-
ficiale generativa, in grado di interpretare e ampliare gli elementi strutturali
con creativita, coerenza semantica e sensibilita contestuale [9)].

In termini pratici, gli obiettivi specifici del lavoro possono essere suddivisi in tre
macro aree:

1.4.1 Obiettivi di ricerca e sperimentazione

Analizzare e integrare i principali modelli di generazione narrativa automati-
ca, con particolare attenzione all’equilibrio tra controllo strutturale e liberta
creativa.

Verificare l'efficacia dell’uso di modelli linguistici di grandi dimensioni (LLM)
come strumento di supporto alla scrittura videoludica, valutando la qualita,
la coerenza e la varieta delle storie prodotte.

Sperimentare la combinazione di framework narrativi classici (come il Viaggio
dell’Eroe, la struttura in tre atti e i tropi narrativi) con approcci adattivi
basati su Al in linea con i principi del narrative design interattivo [10 [I].

Definire un flusso di lavoro standardizzato per la generazione, validazione e
correzione automatica di storie videoludiche.

1.4.2 Obiettivi implementativi

Progettare un’architettura a moduli in grado di suddividere il processo narrati-
vo in quattro step distinti, seguendo principi di separazione delle responsabilita
e scalabilita [g].

Implementare un backend Python con servizi RESTful per I'interazione tra le
componenti e la gestione asincrona dei job di generazione [7].

Integrare modelli linguistici e sistemi di embedding semantico per garantire
una comprensione contestuale dei dati narrativi e dei riferimenti teorici.

Realizzare un frontend in Unreal Engine che consenta la selezione degli step, la
visualizzazione dei risultati, 'analisi dei grafi narrativi e la sintesi finale della
storia.

Implementare un sistema di validazione automatica in grado di identificare
incoerenze semantiche, logiche o cronologiche nella storia generata.

1.4.3 Obiettivi qualitativi e progettuali

Garantire la coerenza narrativa interna tra i vari capitoli e atti, assicurando
la continuita di personaggi, temi e relazioni.

Mantenere un elevato grado di adattabilita del sistema, permettendo la gene-
razione di storie appartenenti a generi differenti con un’unica base strutturale.

Offrire un’interfaccia intuitiva che favorisca 'interazione tra utente e sistema,
riducendo le barriere tecniche per il designer non esperto.

Creare una piattaforma estendibile, capace di evolversi nel tempo con 1'ag-
giunta di nuovi moduli e modelli di intelligenza artificiale.

1.4.4 Sintesi finale degli obiettivi

L’obiettivo finale del progetto ¢ dunque quello di congiungere la logica narrativa
classica con la generazione automatica, dimostrando che l'intelligenza artificiale puo
essere usata per espandere la capacita ideativa umana. Il sistema proposto non inten-
de sostituire la figura del narrative designer, ma fornire uno strumento di supporto
intelligente, capace di:

generare strutture narrative coerenti e flessibili;
adattare i contenuti in base alle esigenze del progetto;
ridurre i tempi di prototipazione narrativa;

migliorare la qualita e la varieta delle esperienze interattive prodotte.

In tal modo, il lavoro si inserisce in un pit ampio filone di ricerca volto a esplorare
le intersezioni tra intelligenza artificiale, design narrativo e creativita umana, po-
nendo le basi per una nuova generazione di strumenti a supporto della progettazione
narrativa nei videogiochi.

10

1.5 Risultati e feedback

La fase di sperimentazione del sistema ha evidenziato risultati promettenti sia dal
punto di vista tecnico sia da quello narrativo. I test condotti su scenari differen-
ti hanno evidenziato come ’approccio multistep adottato struttura — capitoli —
storia — validazione consenta di mantenere un buon controllo sulla progressione
narrativa, riducendo la propagazione di errori e migliorando la coerenza complessiva
della storia. I risultati mostrano che:

o le strutture narrative generate risultano solide e ben formate;

o la suddivisione in capitoli produce sequenze coerenti e funzionali al ritmo
narrativo;

» la narrazione completa presenta una qualita generalmente buona, risultando
comprensibile e coerente;

e i moduli di validazione migliorano sensibilmente la continuita narrativa iden-
tificando molte delle incoerenze interne.

I test condotti con studenti, sviluppatori e appassionati di narrativa interattiva
hanno messo in luce sia i punti di forza del sistema sia alcune aree di miglioramento.
Tra le principali osservazioni:

Chiarezza del flusso e modularita. La suddivisione in step e stata apprezzata
perché consente di comprendere facilmente la logica del processo e di intervenire
su ogni fase senza compromettere le altre. Gli utenti hanno sottolineato come il
sistema favorisca un approccio “guidato” alla generazione narrativa, ideale per la
fase di brainstorming o di pre-produzione di un progetto videoludico.

Coerenza narrativa generale. Le storie generate presentano una buona coe-
renza logica tra i capitoli, specialmente quando la struttura di partenza e sufficien-
temente dettagliata. Gli utenti hanno evidenziato che, nella maggior parte dei casi,
la storia generata risulta ben definita, coerente e facilmente comprensibile nel suo
insieme. Tuttavia, ¢ emersa la necessita di migliorare la gestione delle dipenden-
ze tra eventi e la diversificazione dei finali, che tendono talvolta a seguire pattern
ricorrenti.

Dettaglio degli elementi narrativi. Sono emerse situazioni in cui alcuni
elementi risultano poco caratterizzati o non descritti a sufficienza, soprattutto nei
capitoli intermedi o nelle sezioni meno centrali della trama.

Coerenze locali tra capitoli. Sebbene la struttura narrativa complessiva sia
solida, la continuita tra capitoli puo talvolta risultare poco chiara o non adeguata-
mente definita, generando piccole discontinuita o salti logici.

11

Incoerenze nella descrizione di alcuni elementi. In casi piu complessi,
alcuni elementi vengono descritti in modo incoerente rispetto alla trama globale de-
finita, principalmente a causa di ambiguita nei prompt o di interpretazioni divergenti
da parte del modello.

Limitazioni tecniche dei modelli AI attuali. Parte di queste criticita e
imputabile alle limitazioni tecniche dei modelli linguistici utilizzati, che, pur essen-
do avanzati, possono faticare nella gestione di lunghe catene logiche, dipendenze
narrative complesse o descrizioni molto dettagliate. E prevedibile che tali problemi
possano essere significativamente ridotti adottando modelli piu performanti, incluse
versioni evolute dei LLM o modelli a pagamento con maggiore capacita contestuale
e potenza inferenziale, capaci di mantenere meglio la coerenza narrativa e la qualita
del dettaglio.

Supporto creativo complessivo. Nonostante i limiti locali, gli utenti concor-
dano nel ritenere che la storia generata fornisce un supporto completo e concreto
all’utilizzatore, risultando altamente utile per attivita di brainstorming, prototipa-
zione rapida e definizione preliminare della narrativa.

Interfaccia e visualizzazione. L’integrazione con Unreal Engine ¢ stata par-
ticolarmente apprezzata, soprattutto per la possibilita di visualizzare graficamente
il grafo narrativo e analizzare la progressione della storia in modo immediato.

1.5.1 Conclusione

I risultati complessivi confermano la validita dell’approccio ibrido adottato, che uni-
sce la struttura narrativa tradizionale alla generazione adattiva degli LLM. Pur con
alcune limitazioni tecniche, il sistema rappresenta uno strumento efficace e versatile,
capace di supportare il game designer nella progettazione narrativa e di aprire la
strada a nuove modalita di creazione di contenuti interattivi. L’evoluzione futura
dei modelli linguistici, unitamente all’espansione del sistema, promette di rendere
la generazione narrativa automatica uno strumento sempre piu affidabile, coerente
e creativo.

12

Capitolo 2

Contesto e stato dell’arte

2.1 Lo storytelling: definizione e ruolo nella co-
municazione umana

Lo storytelling puo essere descritto come I'arte di costruire e trasmettere storie e
rappresenta una delle forme piu antiche e fondamentali di comunicazione umana.
Fin dalle prime civilta, il racconto ha costituito uno strumento essenziale per tra-
mandare conoscenze, valori, paure e speranze, assumendo funzioni educative, rituali
e culturali. Dai miti delle tragedie greche ai romanzi moderni, la narrazione ha
accompagnato 'evoluzione dell'umanita, adattandosi ai media e alle tecnologie di
ogni epoca [2].

La sua funzione principale ¢ quella di creare significato, organizzando 1’esperien-
za umana in forme comprensibili e condivisibili. Raccontare una storia significa dare
ordine al caos degli eventi, stabilire relazioni di causa-effetto, attribuire ruoli e mo-
tivazioni ai personaggi e trasformare ’esperienza individuale in esperienza collettiva

[2].

13

2.1.1 Aristotele e le origini della teoria della narrativa

Le prime teorie sulla costruzione delle storie risalgono ad Aristotele, che nella Poetica
definiva la struttura degli eventi come 1’elemento centrale del dramma, ritenendola
pit importante dei personaggi e del linguaggio stesso [11]. Secondo Aristotele, una
narrazione efficace deve possedere:

o Unita di azione: gli eventi devono essere collegati da rapporti causali.

e Inizio, parte centrale e conclusione: una struttura che consenta alla
vicenda di evolversi secondo una logica interna.

o Peripezia e riconoscimento: momenti di svolta e rivelazione che trasfor-
mano la comprensione della storia.

o Catarsi: una funzione emotiva che coinvolga lo spettatore attraverso empatia,
paura e compassione.

Il modello aristotelico rappresenta tuttora un pilastro della narrativa e influen-
za profondamente anche le forme moderne dello storytelling, inclusa la narrazione
videoludica [T1].

2.1.2 Da Campbell a Propp: archetipi e strutture ricorrenti

Nei secoli successivi, numerosi studiosi hanno tentato di identificare strutture uni-
versali e ricorrenti nelle storie. Joseph Campbell, con The Hero with a Thousand
Faces, ha proposto il modello del “Viaggio dell’Eroe” [10], una struttura narrativa
ciclica basata su 17 tappe che descrivono il percorso archetipico del protagonista
verso la trasformazione.

Parallelamente, Vladimir Propp ha condotto un’analisi morfologica delle fiabe
popolari russe, identificando 31 funzioni narrative ricorrenti e 7 archetipi (eroe,
antagonista, aiutante, mandante, donatore, ecc.) [I2]. La sua analisi mostra come
le storie possano essere scomposte in unita fondamentali che si combinano secondo
regole precise, anticipando concetti oggi centrali nello storytelling.

14

2.2 La narrazione videoludica nella letteratura scien-
tifica

La narrazione nei videogiochi e diventata, nel corso degli ultimi vent’anni, uno dei
temi centrali della ricerca accademica. La natura interattiva delle narrazioni ha
posto la necessita di ripensare ai modelli narrativi tradizionali, portando alla nascita
di una vasta letteratura dedicata allo studio delle forme narrative emergenti nei
giochi digitali.

Uno dei primi contributi fondamentali ¢ quello di Janet Murray, che nel suo testo
Hamlet on the Holodeck (1997) descrive il videogioco come un ambiente narrativo
potenzialmente infinito, capace di coniugare immersione e trasformazione [2]. Mur-
ray introduce il concetto di proceduralita narrativa, sottolineando come la capacita
di generare risposte e scenari in tempo reale offra nuove possibilita espressive non
presenti nei media lineari [2].

Accanto a Murray, Henry Jenkins ha proposto il concetto di narrative architectu-
re, sostenendo che i videogiochi non devono essere intesi come narrazioni lineari, ma
come spazi narrativi che il giocatore esplora costruendo la propria esperienza [13].
Per Jenkins, il level design non € semplicemente una questione tecnica: esso costi-
tuisce la vera architettura del racconto, una forma di environmental storytelling che
comunica informazioni attraverso ambientazioni, oggetti ed eventi ambientali [13].

La ricerca contemporanea riconosce che la narrazione videoludica non € una sem-
plice trasposizione del linguaggio filmico o letterario, ma un sistema multistrato, in
cui convivono molteplici tipologie di narrazione. Autori come Gonzalo Frasca hanno
distinto tra ludology e narratology, sostenendo che i videogiochi vadano analizzati
principalmente come sistemi di regole che generano significato attraverso il gioco
stesso [14]. Tuttavia, i modelli piu recenti integrano entrambe le prospettive, ri-
conoscendo che la narrazione videoludica nasce dal dialogo tra struttura ludica e
struttura narrativa.

La complessita della narrazione nei videogiochi ¢ stata ulteriormente approfondi-
ta in studi di design narrativo, come Slay the Dragon: Writing Great Video Games
[1], che distingue tra gameplay-driven storytelling e story-driven gameplay. 11 pri-
mo privilegia la meccanica come generatore di significato; il secondo costruisce il
gameplay attorno a una struttura narrativa.

Questa ricca tradizione teorica fornisce un quadro solido per comprendere la
natura peculiare dello storytelling interattivo e costituisce il fondamento concettuale
su cui si basano i metodi e gli strumenti utilizzati nel progetto descritto in questa
tesi.

15

2.3 Evoluzione dello storytelling nei videogiochi

Lo storytelling nei videogiochi ha attraversato una trasformazione radicale negli
ultimi quarant’anni, passando da elemento accessorio a componente fondamentale
dell’esperienza videoludica. Questa evoluzione non ¢ stata lineare, ma ha seguito
un percorso in cui innovazioni tecnologiche, cambiamenti culturali e nuove forme
di design che hanno progressivamente ampliato la complessita narrativa dei giochi
digitali.

2.3.1 Le origini: narrazione minimale (anni ’70—’80)

Nei primi videogiochi arcade e nei sistemi domestici di fine anni ’70, la narrazione
aveva un ruolo quasi simbolico. Titoli come Space Invaders (1978) o Pac-Man (1980)
si limitavano a una cornice narrativa appena accennata, spesso descritta unicamente
nel manuale di istruzioni. La priorita non era raccontare una storia, ma proporre
una sfida ludica immediata, basata su punteggi e abilita.

Con I'avvento del computer come mezzo creativo, iniziarono ad emergere i primi
tentativi di narrazione strutturata, come nelle text adventure: Colossal Cave Adven-
ture (1976) e Zork (1980) introdussero un modello di storytelling testuale ricco di
descrizioni, enigmi e progressione narrativa. Pur nella loro semplicita tecnica, questi
giochi posero le basi della narrazione interattiva moderna.

Figura 3: Pac-Man Year 1980

16

2.3.2 Gli anni ’90: l’'ingresso della narrativa cinematografica

L’avanzamento delle capacita grafiche con sistemi a 16-bit e, successivamente, 1'in-
troduzione del 3D cambiarono radicalmente ’approccio alla narrazione. In questo
periodo nacquero titoli che cercavano di imitare la regia, i ritmi e il linguaggio del
cinema: Final Fantasy VI (1994), Chrono Trigger (1995), Metal Gear Solid (1998),
Half-Life (1998) e Baldur’s Gate (1998) introdussero personaggi complessi, sequenze
animate, dialoghi articolati e trame emotivamente dense.

La narrazione, da semplice cornice, inizio a diventare parte integrante dell’iden-
tita del gioco.

giapi

Figura 4: Final Fantasy VI Year 1994

2.3.3 La maturita narrativa dei 2000: interattivita, scelte e
moralita

Con l'ingresso nel nuovo millennio, la narrazione videoludica compi un ulteriore
salto verso forme pill articolate, interattive e ramificate. E in questo periodo che si
afferma il concetto di player agency, ossia la capacita del giocatore di modificare la
storia attraverso scelte morali o strategiche.

BioWare, con Star Wars: Knights of the Old Republic (2003), Mass Effect (2007)
e Dragon Age (2009), introdusse sistemi conversazionali a scelta multipla, gestione
delle relazioni e finali alternativi. Parallelamente, The FElder Scrolls e Fallout di
Bethesda sperimentarono narrazioni emergenti basate su mondi aperti, dove le storie
non venivano solo raccontate, ma scoperte.

La narrazione smise dunque di essere per lo piu lineare, ma divenne ramificata,
modulare e personalizzabile.

17

Figura 5: Dragon Age Year 2009

2.3.4 2010-2020: la fusione tra gameplay e narrazione

Il decennio successivo vide 'affermarsi definitivo del videogioco come mezzo narra-
tivo maturo. Titoli come The Last of Us (2013), The Witcher 3 (2015), Red Dead
Redemption 2 (2018) e God of War (2018) introdussero un modello di scrittura
altamente cinematografico ma profondamente integrato con il gameplay.

Nel frattempo, il settore indie esploro forme sperimentali di narrazione, spesso
piu intime e concettuali: Journey (2012), Inside (2016), Celeste (2018) e Disco
FElysium (2019) mostrarono come la narrazione potesse emergere dal movimento,
dall’ambiente o dalle meccaniche stesse, senza bisogno di cutscene tradizionali.

Figura 6: God of War Year 2018

18

2.3.5 Oggi: mondi narrativi complessi e sistemi intelligenti

L’odierna generazione di videogiochi presenta strutture narrative sempre piu intri-
cate, animate da mondi aperti, IA comportamentali e sistemi dinamici. Contem-
poraneamente, l'industria e chiamata a confrontarsi con la crescente complessita
dei progetti: mantenere coerenza narrativa per decine e decine di ore di gioco, con
centinaia di personaggi e linee di dialogo, ¢ diventato un compito monumentale.

E in questo contesto che si fa strada l'idea di utilizzare strumenti basati su
intelligenza artificiale per supportare narrative designer, scrittori e team di sviluppo
nelle fasi di prototipazione, worldbuilding e controllo della coerenza.

La generazione di storie, un tempo dominio esclusivo dell’autore umano, diventa
oggi un’area sperimentale in cui strutture narrative formali e modelli linguistici
generativi possono collaborare per creare nuove forme di narrazione interattiva.

Figura 7: ARC Raiders Year 2025

19

20

Capitolo 3

Metodologie e tecnologie utilizzate

Nell’industria videoludica moderna, la creazione della storia segue processi strut-
turati. Gli studi tripla A adottano un modello di sviluppo che combina molteplici
passaggi per realizzare videogiochi di successo [15]. La narrazione viene costrui-
ta iterativamente, attraverso prototipazione e playtesting [15]. Nonostante cio, la
complessita crescente delle produzioni moderne rende difficile mantenere coerenza e
varieta in storie lunghe decide e decine di ore [I]. Per questo motivo, molte azien-
de stanno valutando l'introduzione di strumenti intelligenti per assistere gli autori
nelle fasi preliminari di brainstorming, worldbuilding e gestione delle dipendenze
narrative [I].

3.1 Metodologie attuali per generare storie video-
ludiche

La creazione di storie videoludiche nei giochi tripla A ¢ un processo complesso che
coinvolge scrittori, narrative designer, quest designer, level designer, game director
e team di ricerca [I]. A differenza delle narrazioni lineari presenti in cinema o
letteratura, la storia nei videogiochi deve integrarsi con sistemi di gioco, scelte del
giocatore, ritmi di gameplay e vincoli tecnologici [T].

3.1.1 Concept narrativo e definizione della visione

Il processo di ideazione di un videogioco a forte componente narrativa inizia con la
definizione di una visione condivisa del progetto. In questa fase preliminare vengono
individuati i temi centrali, il tono emotivo, ’esperienza desiderata per il giocatore e
la cosiddetta Player Fantasy, intesa come 'insieme di aspettative, ruoli e azioni che
definiscono 'esperienza ludica proposta al giocatore [15].

21

Questi elementi costituiscono una base concettuale che orienta le successive scelte
narrative e di game design, fungendo da riferimento costante durante 'intero ciclo
di sviluppo [15].

3.1.2 La writers’ room e la costruzione della macro-struttura
narrativa
Una volta definita la visione generale, il lavoro si sviluppa spesso all’interno di una

writers’ room [I]. In questa fase il team narrativo discute e formalizza I'identita del
progetto, definendo:

I’ambientazione generale;

gli archi narrativi principali e secondari;

e i personaggi chiave e le loro motivazioni;

la struttura globale della storia (ad esempio tre atti, atti multipli).

Questa fase e prevalentemente concettuale e ha 'obiettivo di costruire un fra-
mework narrativo condiviso, riducendo il rischio di incoerenze tra le diverse compo-
nenti del team di sviluppo [1].

3.1.3 Il Narrative Design Document

La visione narrativa viene successivamente formalizzata nel Narrative Design Do-
cument (NDD), un insieme di documenti che rappresenta il riferimento narrativo
principale del progetto [I]. L’NDD descrive:

1. la struttura degli atti e degli snodi narrativi principali;
2. i personaggi, i loro archetipi, background e relazioni;
3. gli eventi chiave e i principali turning points;

4. i temi portanti e i conflitti centrali;

5. le modalita di integrazione tra gameplay e narrazione.

Nei progetti contemporanei 'NDD non ¢ un documento statico, ma viene ag-
giornato iterativamente e mantenuto in stretta relazione con il game design, il level
design e le missioni secondarie, garantendo coerenza tra narrazione ed esperienza
ludica [1].

22

3.1.4 Strutture ramificate e gestione della complessita nar-
rativa

Molti videogiochi narrativi moderni adottano strutture ramificate che prevedono
scelte multiple, percorsi alternativi e finali differenziati [I]. La progettazione di tali
sistemi richiede I'uso di strumenti dedicati alla gestione dei grafi narrativi e delle
condizioni logiche che regolano I’evoluzione della storia [I].

Tra gli strumenti piu utilizzati si possono citare piattaforme come Articy Draft
o editor narrativi proprietari, che consentono di collegare dialoghi, eventi, variabili
di stato e conseguenze narrative [16].

La gestione della complessita narrativa deve tenere conto non solo delle scelte
del giocatore, ma anche della coerenza temporale, della psicologia dei personaggi,
della continuita delle relazioni e dei vincoli produttivi legati agli asset di gioco [1].

3.1.5 Iterazione, playtesting e riscrittura

Nel contesto videoludico la narrazione e fortemente legata al processo di iterazione.
Attraverso il playtesting viene valutata 'efficacia della storia in relazione al game-
play, verificando il ritmo narrativo, la significativita delle scelte offerte al giocatore
e la coerenza complessiva del mondo di gioco [15].

Questa fase comporta frequenti riscritture, modifiche alle missioni, aggiustamenti
degli archi dei personaggi e una continua mediazione tra esigenze narrative e vincoli
Tudici [1].

3.1.6 Scalabilita narrativa e complessita produttiva

Nei videogiochi di grandi dimensioni la narrazione deve essere progettata per essere
scalabile [I]. Titoli contemporanei presentano una quantita elevata di contenuti nar-
rativi, personaggi e linee di dialogo, rendendo la coerenza interna una delle principali
sfide produttive [I].

Per affrontare tale complessita sono necessari strumenti di gestione avanzati,
pipeline iterative, team interdisciplinari e processi di revisione continui [I5]. In
questo contesto si colloca il crescente interesse verso metodologie automatizzate e
sistemi di supporto basati su intelligenza artificiale, concepiti come strumenti di
assistenza al lavoro di scrittori e designer.

23

3.2 Lanuova frontiera: I’intelligenza artificiale nel-
lo storytelling videoludico

Negli ultimi anni, 'intelligenza artificiale ha introdotto una trasformazione radicale
nel modo in cui vengono progettati, generati e gestiti i contenuti narrativi all’interno
dei videogiochi. Se in passato la narrazione videoludica dipendeva interamente dal
lavoro umano, spesso accompagnato da un enorme investimento di tempo, risorse
e competenze specialistiche, I'avvento dei modelli linguistici di grandi dimensioni
(Large Language Models, LLM) ha aperto nuove possibilita per il supporto alla fase
di design.

[’AI non si limita a generare testo: essa € in grado di interpretare contesto,
strutture narrative, ruoli dei personaggi, relazioni, tropi narrativi ricorrenti e di-
pendenze logiche, grazie a capacita di ragionamento sempre piu avanzate. Questa
nuova tecnologia consente di progettare strumenti capaci di amplificare la creativita
del game designer, accelerare la prototipazione e ridurre la complessita gestionale
tipica dei grandi progetti tripla A.

3.2.1 AI come strumento creativo per autori e game desi-
gner

Quindi una delle applicazioni piu utili di tali modelli riguarda il supporto alla
narrazione. L’Al non sostituisce I'autore umano, ma lo affianca in tre compiti
fondamentali:

1. Brainstorming narrativo:
L’AI puo proporre idee, varianti di trama, twist alternativi e nuovi archetipi
di personaggio.

2. Prototipazione rapida della storia:
Un sistema Al puo generare rapidamente bozze di capitoli, descrizioni di
ambienti, dialoghi e quest.

3. Controllo della coerenza interna:
I modelli possono essere utilizzati per verificare incongruenze logiche, errori di
continuita o problemi legati alla caratterizzazione dei personaggi.

Questo approccio permette agli sviluppatori di concentrarsi sugli elementi piu
creativi del processo, delegando all’Al compiti ripetitivi, di supporto o preparatori.

24

3.2.2 Strumenti ibridi: combinare strutture formali e Al
generativa

Il sistema descritto in questa tesi utilizza un approccio ibrido con una struttura nar-
rativa formale, arricchita da un motore di generazione testuale AI-driven e sostenuta
da un sistema di validazione logico-semantico.

Questo approccio consente di superare il limite principale dei LLM, ovvero la
difficolta nel mantenere coerenza su lunghi archi narrativi, offrendo una narrativa
organizzata e controllata, in cui I’Al agisce all’interno di vincoli formalizzati.

25

3.3 Introduzione al sistema sviluppato

Per raggiungere tali obiettivi, il sistema e stato progettato come applicazione client—
server [7]. 1l backend, sviluppato in Python [I7], gestisce in maniera completa
I’esecuzione dei quattro step principali della pipeline narrativa:

o generazione della struttura;

e creazione dei capitoli;

o produzione della storia dettagliata;
« validazione automatica;

e generazione sintesi storia.

Il frontend, realizzato in Unreal Engine [I8], consente all’utente di interagire
con ciascuna di queste fasi tramite un’interfaccia intuitiva, permettendo di avviare
i processi, visualizzare gli output e monitorare lo stato delle elaborazioni.

L’architettura complessiva si fonda su una pipeline suddivisa in moduli indipen-
denti, caratteristica che garantisce scalabilita, rendendo possibile I'aggiunta di nuovi
step o la modifica di quelli esistenti e al tempo stesso modularita, poiché ogni fase
produce output formattati e riutilizzabili. Questa suddivisione consente inoltre di
controllare progressivamente la complessita narrativa, riducendo gli errori tipici dei
modelli generativi e migliorando la trasparenza e la verificabilita del processo. Un
ruolo centrale nel funzionamento del sistema ¢ dato dai meccanismi di embedding,
grazie ai quali ’Al non opera esclusivamente sui prompt, ma puo integrare infor-
mazioni provenienti da documenti strutturati, oltre che da testi di riferimento. Cio
consente al modello di lavorare su basi narrative coerenti e controllate, migliorandone
la capacita di produrre contenuti rilevanti e semanticamente accurati.

Per garantire un’esecuzione fluida e non bloccante, il backend adotta inoltre un
sistema a thread che permette di gestire in maniera efficiente operazioni particolar-
mente intensive, mantenendo allo stesso tempo un flusso asincrono delle richieste
[1.

26

3.4 Architettura generale del sistema

L’architettura del sistema e stata progettata seguendo un approccio orientato alla
modularita e alla separazione delle responsabilita, al fine di integrare modelli Al,
risorse narrative strutturate e un’interfaccia interattiva senza generare dipendenze
rigide tra le componenti. Il sistema adotta un architettura client-server [7], scelta
che permette di isolare la logica computazionale dalla gestione dell’interazione con
I'utente e di distribuire il carico elaborativo in maniera controllata.

Il backend rappresenta il nucleo logico del sistema e opera come motore della
pipeline narrativa. Tuttavia, a livello architetturale non viene percepito come un
insieme di step isolati, ma come un unico workflow, basato su elaborazioni succes-
sive di dati strutturati. Ogni fase della pipeline, dalla generazione della struttura
fino alla validazione, applica regole differenti ma opera secondo lo stesso principio
architetturale: riceve un input formalizzato, lo elabora tramite modelli Al e restitui-
sce un output verificabile. Questo pattern consente di mantenere una separazione
chiara tra contenuto narrativo, logica di elaborazione e controllo della coerenza. La
comunicazione tra frontend e backend avviene attraverso servizi REST, che facilita-
no l'interoperabilita e consentono di mantenere un’interfaccia stabile anche qualora
il sistema venisse esteso con nuove funzionalita, nuovi step o differenti modelli Al

Un elemento fondamentale dell’architettura e rappresentato dall’'uso di embed-
ding e risorse narrative strutturate come base dell’intero sistema. A differenza di un
approccio puramente generativo, l'architettura qui adottata prevede l'integrazione
di file JSON, documenti di riferimento e politiche narrative in modo da fornire ai
modelli un contesto coerente. In questo modo la generazione non e affidata esclusiva-
mente al modello, ma avviene all’interno di un ambiente controllato. Per assicurare
reattivita e continuita del servizio, il backend utilizza un sistema multithread, che
permette di eseguire operazioni di generazione e validazione in modo asincrono [17].
Con questo approccio la pipeline ¢ progettata per essere composta da processi indi-
pendenti che possono essere monitorati e completati senza interferire con gli altri. Il
frontend realizzato in Unreal Engine interagisce con il sistema attraverso una serie
di richieste e svolge il ruolo di mediatore tra l'utente e il workflow interno. Dal
punto di vista architetturale, esso non contiene logica narrativa, ma esclusivamente
la gestione dell’interazione, della visualizzazione e della comunicazione con il server.
Questa separazione consente al frontend di rimanere leggero, sostituibile e facilmente
integrabile in pipeline di sviluppo videoludiche pitu ampie.

27

Resources

Server

et

Rest API Service

Client

Pipeline Workflow

Pipeline Workflow

Pipeline Workflow

Step 1- Structure
Process

—_—

Step 1- Structure
Process

Step 1 - Structure
Process

Step 2 - Chapters

Step 2- Chapters

Step 2- Chapters

Process Process Process
Step 3. Story Step 3 - Story Step 3- Story
Process Process Process

Step 4 - Validation
Process

Step 4 - Validation
Process

Step 4 - Validation
Process

Multi Thread System

Figura 8: Overview architettura / workflow sistema

28

3.5 Backend del sistema: tecnologie e metodolo-
gia di funzionamento

3.5.1 Tecnologie utilizzate

I1 backend ¢ sviluppato interamente in Python [I7], linguaggio scelto per la sua ver-
satilita, la ricchezza dell’ecosistema dedicato al machine learning e la semplicita di
integrazione con sistemi esterni tramite API. Python inoltre rende possibile com-
binare in modo naturale 'uso di modelli Al, la manipolazione di dati strutturati,
la creazione di servizi REST e la gestione di processi concorrenti. Il sistema fa uso
di un modello di intelligenza artificiale di ultima generazione (Gemini 2.5 Flash)
[19], in grado di analizzare prompt complessi, produrre strutture narrative artico-
late e adattare la generazione al contesto fornito. La scelta di un modello leggero
ma performante risponde alla necessita di garantire tempi di risposta ragionevoli,
mantenendo al contempo un livello qualitativo sufficiente per una pipeline narrativa
multi-step.

Accanto ai modelli Al il backend utilizza librerie per la comunicazione HT'TP, la
gestione del threading e la manipolazione dei dati JSON, fondamentali per struttu-
rare i contenuti narrativi, scambiare informazioni con il frontend e gestire la pipeline
in modo fluido.

29

Embedding System

l Narrative 2 5 A
bl -“-----)Cards.lsnn - Characters.json - Story.json

Job & Thread Manager

Step 1- Structure
e - — — RESTAPILayer - — - O L s

Step 2 - Chapters
Process

l

X

Al Model Layer

Gemini 2.5 Flash

Model

Step 3 - Stary
Process

i

Step 4 - Validation
Process

-

~ = -RESTAPILayer — — — - — — — — — B — — — — — — Narrative Multi-Step Pipeline

Figura 9: Overview architettura backend

3.5.2 Gestione delle risorse narrative strutturate

Un elemento chiave del backend ¢ la gestione dei documenti narrativi strutturati,
che rappresentano la base semantica su cui poggia l'intera generazione. Questi
documenti includono file JSON dedicati alla definizione degli elementi fondamentali
della storia, come archetipi dei personaggi, tropi narrativi, obiettivi di trama, eventi
cardine e vincoli di coerenza.

I principali insiemi di dati utilizzati dal sistema sono:

e Story.json, che definisce la struttura narrativa di riferimento e gli elementi
generali della trama;

o Characters. json, che descrive profili, ruoli, archetipi e relazioni dei perso-
naggi;

o Cards.json, che contiene elementi contestuali e moduli narrativi utilizzati
nella costruzione della struttura.

Questi file costituiscono una sorta di grammatica narrativa che permette all’Al
di operare all’interno di uno spazio semantico controllato, riducendo la generazione

30

casuale e favorendo la coerenza interna. A supporto di tali risorse, il sistema utilizza
inoltre testi di riferimento come Slay the Dragon che forniscono un quadro teorico
per la definizione delle funzioni narrative e delle strutture utilizzate.

3.5.3 Sistema di embedding e model recognition

Per consentire al modello Al di lavorare efficacemente con le risorse e i documenti
complessi, il backend integra un sistema di embedding, che trasforma testi e infor-
mazioni strutturate in rappresentazioni vettoriali. Queste rappresentazioni permet-
tono al sistema di analizzare semanticamente i documenti, recuperare informazioni
rilevanti e fornire al modello Al un contesto mirato e coerente.

Il sistema di embedding supporta un approccio tipico dei sistemi Retrieval-Augmented
Generation (RAG), nel quale la generazione testuale viene guidata da conoscenze
estratte dinamicamente. In questo modo il backend puo “riconoscere” elementi per-
tinenti della storia, allineare le generazioni a vincoli narrativi predefiniti e ridurre
errori legati alla perdita di contesto.

Questa metodologia permette di compensare alcuni limiti intrinseci dei modelli
linguistici (in particolare la difficolta nel mantenere coerenza su lunghe sequenze)
attraverso il recupero mirato di informazioni semantiche.

3.5.4 Pipeline narrativa multi-step

La generazione della storia e strutturata come una pipeline composta da fasi distin-
te, ognuna delle quali elabora un livello specifico della narrazione. Tale divisione
deriva dalla seguente considerazione: una generazione monolitica porterebbe a una
maggiore perdita di coerenza e renderebbe difficile controllare in modo dettagliato
I’evoluzione della trama.

La pipeline adottata nel backend segue un principio di evoluzione progressiva
dei dati: ogni step riceve un input validato, applica regole narrative e produce un
output formalizzato che diventa il punto di partenza per la fase successiva. Questo
approccio riduce il carico cognitivo del modello, distribuisce la complessita lungo
diversi livelli e consente di intervenire in modo mirato su eventuali incoerenze.

Tale struttura favorisce inoltre I'adattabilita del sistema, permettendo ad esem-
pio di sostituire singole fasi, aggiungere nuove componenti o affinare la logica dei
moduli senza compromettere l'intera architettura.

3.5.5 Sistema a thread e gestione asincrona dei job

Poiché la generazione narrativa puo richiedere tempi di elaborazione significativi,
il backend utilizza un sistema multithread per garantire fluidita e reattivita. Le
richieste provenienti dal frontend vengono gestite come job indipendenti, i quali
possono essere eseguiti e monitorati senza bloccare I'intero server.

31

Questa metodologia assicura che piu operazioni possano essere avviate in paral-
lelo, migliorando 'esperienza dell’utente e prevenendo congestioni dovute a processi
particolarmente onerosi. Il server mantiene uno stato interno per ciascun job, ag-
giornando dinamicamente l'avanzamento delle elaborazioni e restituendo notifiche
al frontend quando i risultati sono pronti.

3.5.6 Comunicazione tramite REST API

La comunicazione tra backend e frontend avviene attraverso dei servizi REST, che
definiscono un protocollo standard per 'invio delle richieste e la ricezione dei risul-
tati. Ogni fase della pipeline e associata a un endpoint dedicato, che riceve i pa-
rametri necessari, avvia il job corrispondente e restituisce un identificatore univoco
attraverso cui monitorare ’elaborazione.

L’adozione di un’architettura RESTful conferisce al sistema flessibilita e intero-
perabilita e permette, infatti, non solo I'integrazione con Unreal Engine, ma anche
la possibilita futura di collegare strumenti esterni, editor narrativi o applicazioni di
prototipazione. La separazione netta tra logica narrativa e interfaccia di presenta-
zione favorisce inoltre la sostituibilita delle componenti e la scalabilita dell’intero
sistema.

32

3.6 Frontend: Unreal Engine e interfaccia utente

I1 frontend del sistema e realizzato in Unreal Engine [I8], uno dei motori di sviluppo
piu diffusi e consolidati nell’industria videoludica. La scelta di questa tecnologia
risponde alla volonta di integrare il sistema di generazione narrativa all’interno di
un ambiente nativo per la produzione di videogiochi, consentendo al game designer
di sperimentare e valutare la storia generata direttamente in un contesto affine al
prodotto finale.

Quindi il frontend agisce come un mediatore, traducendo 1’azione dell’utente in
richieste formali inviate tramite API e presentando i risultati in maniera organizzata.

3.6.1 Tecnologie utilizzate in Unreal Engine

I1 frontend sfrutta principalmente il sistema UMG (Unreal Motion Graphics) per
la creazione dell’interfaccia utente e la gestione dei widget [20]. Questa tecnologia
consente di progettare pannelli, pulsanti e aree di testo attraverso un approccio
visuale, mantenendo al contempo la possibilita di estendere le funzionalita tramite
Blueprint o codice C++.

L’utilizzo di Unreal Engine permette inoltre di predisporre con facilita futu-
re estensioni del progetto, come l'integrazione delle storie generate in prototipi di
gameplay, la visualizzazione grafica della struttura narrativa o ’esplorazione inte-
rattiva del mondo narrativo prodotto dall’Al. Tale scelta metodologica mantiene
aperta la possibilita di trasformare il sistema da un semplice strumento di supporto
alla scrittura a un vero tool narrativo embedded nel flusso di sviluppo del gioco.

3.6.2 Comunicazione con il backend tramite REST API

Il frontend comunica con il backend attraverso chiamate HT'TP REST usando il
plugin VaRest disponibile sulla piattaforma [2I]. Ogni azione dell’utente, avvio di
uno step, richiesta dello stato di un job, recupero del risultato, viene tradotta in una
chiamata API corrispondente.

All’interno di Unreal Engine, le richieste REST vengono gestite tramite com-
ponenti dedicati al networking, che si occupano di serializzare i dati in formato
JSON; inviare la richiesta al server e interpretare la risposta. Il frontend aggior-
na quindi dinamicamente l'interfaccia in funzione dei risultati ottenuti, mostrando
I’avanzamento dei job, eventuali errori e gli output generati.

3.6.3 Interfaccia utente (UI/UX)

L’interfaccia utente & progettata secondo criteri di chiarezza e minimalismo, con
I'obiettivo di permettere al game designer di concentrarsi sui contenuti narrativi e
non sull’interazione con il sistema. La UI si articola in alcune sezioni principali:

33

un pannello dedicato alla selezione dello step della pipeline;

un’area per la configurazione dei parametri (titolo, descrizione, elementi op-
zionali);

una sezione per visualizzare i risultati della generazione;

un’area di sintesi narrativa per facilitare ’analisi del contenuto.

EUW Story Gen Al X

Storyteller Gen Al

STORY DESCRIPTION SECTION

STORY STEPS SECTION
Generate Story Stories
Average time to complete 20 minutes.

COMPLEXITY LEVEL
® 50 Generate

Structure Chapters Story Validation

[Logs Console]

Figura 10: Overview UI/IX FrontEnd

34

3.6.4 Visualizzazione dei risultati

Una parte essenziale del frontend ¢ dedicata alla presentazione dei contenuti generati.
Poiché la storia cresce in complessita a ogni step della pipeline, ¢ necessario un
sistema di visualizzazione che possa adattarsi a dimensioni diversi.

Unreal Engine consente di organizzare questi contenuti all’interno di widget di-
namici, aggiornabili in tempo reale, che permettono all’utente di scorrere, analizzare
e confrontare i vari output. Questo approccio facilita il lavoro del narrative designer,
che puo valutare rapidamente la coerenza del racconto e richiedere nuove generazioni
in caso di necessita.

EUW Stories Panel x
GENERATED STORIES Dust Tornado - story.json
Refresh
"W Cosmic Loop Open Folder
chapters.json Open Json
story.json Open Json
structure. json Open Json
summary.json Open Json
“WwDeep Lost Open Folder
wDust Tornado Open Folder
chapters.json Open Json
story.json Summary Open Json
story_validated.json Summary Open Json
structure. json Open Json
wGreat Escape Open Folder

"W Loop Magic Open Folder

“wNeon City Open Folder

Figura 11: Overview architettura / workflow sistema

35

3.7 Modelli AI e strategie di prompting

L’impiego di modelli di intelligenza artificiale costituisce 1’elemento centrale del-
Iintero sistema di generazione narrativa. Il backend si affida infatti a un modello
linguistico di grandi dimensioni (LLM) per elaborare contenuti coerenti, strutturati
e semanticamente rilevanti, basandosi sulle informazioni fornite dall'utente e sulle
risorse narrative definite nei documenti strutturati.

3.7.1 Modello AI utilizzato

Il sistema utilizza un modello linguistico generativo di ultima generazione, carat-
terizzato da elevate capacita di comprensione del contesto, generazione testuale e
adattamento narrativo. Il modello impiegato (Gemini 2.5 Flash [19]) ¢ stato sele-
zionato in base a criteri di efficienza, velocita di risposta e qualita dei testi prodotti,
in quanto consente di gestire interazioni complesse senza compromettere i tempi di
elaborazione.

Un LLM di questo tipo ¢ in grado di:

e analizzare prompt articolati e riferimenti multipli;

e generare contenuti con struttura coerente;

o comprendere relazioni logiche e temporali;

« adattare lo stile narrativo alle esigenze del progetto;

o operare con informazioni provenienti da embedding e documenti esterni.

3.7.2 Prompt engineering

Il prompting rappresenta una delle componenti pitu delicate e importanti del sistema.

Ogni fase della pipeline narrativa utilizza prompt specifici, progettati per guidare il

modello in modo rigoroso, evitando generazioni eccessivamente libere o incoerenti.
I prompt sono strutturati secondo i seguenti criteri:

contestualizzazione iniziale, che definisce ruolo, stile e vincoli del modello;

o descrizione degli obiettivi, che chiarisce cio che deve essere generato nello
specifico step;

o definizione di regole di contesto, struttura e relazioni;

 integrazione delle risorse narrative, come elementi dei file JSON, archetipi dei
personaggi, tropi o regole strutturali;

36

o vincoli formali sull’output, che impongono un formato preciso e facilmente
validabile;

o strategie di decomposizione, che suddividono richieste complesse in sotto-
problemi piu gestibili.

Questo approccio permette di superare uno dei limiti principali dei modelli gene-
rativi: la tendenza a produrre contenuti inconsistenti o eccessivamente generici. Il
prompt funge cosi da “regia” del processo creativo, assicurando che il modello operi
all’interno di confini ben definiti.

3.7.3 Controllo del contesto e gestione della coerenza

Una delle difficolta maggiori nella generazione narrativa riguarda il mantenimento
della coerenza tra parti distinte della storia. Per affrontare questo problema, il
sistema adotta due strategie complementari.

Suddivisione del processo in step progressivi

La pipeline multi-step riduce la complessita delle generazioni, permettendo al mo-
dello di concentrarsi su un livello narrativo alla volta. In questo modo:

o Step 1 si focalizza esclusivamente sulla struttura;

Step 2 sulla suddivisione in capitoli;

Step 3 sulla narrazione dettagliata;

Step 4 sulla verifica e correzione.

Questa metodologia riduce il rischio di errori cumulativi e migliora la qualita
complessiva della storia.

Integrazione con embedding e documenti esterni

Attraverso il sistema di embedding, il modello riceve un contesto ricco e selezionato,
evitando la perdita di informazioni chiave tra le varie fasi. Le risorse narrative
(Story.json, Characters.json, Cards.json) diventano quindi parte attiva del
processo generativo, garantendo continuita semantica e consistenza logica.

37

3.7.4 Ruolo del modello AI nel sistema

Nel complesso, il modello Al non e utilizzato come un semplice generatore di testo,
ma come una componente centrale dell’architettura narrativa: un interprete del-
le regole, un trasformatore di strutture e un produttore di contenuti sotto vincoli
formali.

L’adozione del prompting strutturato, 'integrazione con embedding e il controllo
progressivo della pipeline permettono di sfruttare il modello in modo piu affidabile
e prevedibile, trasformandolo da strumento generico a motore specializzato per la
costruzione di storie videoludiche.

38

Capitolo 4

Analisi del problema e del design
del sistema

4.1 Introduzione al problema

La generazione automatica di storie videoludiche rappresenta una delle sfide piu
complesse nel campo dell'intelligenza artificiale applicata ai media interattivi. A
differenza della narrativa tradizionale, la storia di un videogioco deve essere coeren-
te, dinamica, adattabile alle interazioni del giocatore e capace di integrare elementi
ludici, emozionali e strutturali all’interno di un unico flusso narrativo. Questa com-
plessita rende particolarmente difficile affidarsi a un processo generativo lineare,
soprattutto quando il sistema deve garantire stabilita semantica, continuita logica e
varieta creativa su piu livelli di granularita.

Il progetto sviluppato in questa tesi nasce proprio dall’osservazione delle diffi-
colta che incontrano i modelli Al generativi quando vengono applicati a problemi
di narrativa estesa. Le prime sperimentazioni hanno evidenziato limiti significati-
vi: perdita di coerenza tra sezioni differenti della storia, difficolta nel mantenere la
continuita dei personaggi, confusione tra elementi del mondo narrativo e una gene-
rale instabilita nella gestione della complessita quando la trama cresce in numero di
eventi e ramificazioni.

La necessita di comprendere a fondo tali problematiche ha guidato la progettazio-
ne del sistema, Un’architettura modulare, basata su una pipeline a step progressivi,
su risorse narrative strutturate e su meccanismi di embedding, ¢ risultata essenziale
per affrontare tali problematiche. Allo stesso tempo, sono emerse nuove sfide legate
al prompting, ai limiti dei modelli linguistici, alla gestione del flusso asincrono delle
operazioni, alla differenziazione dei contenuti generati e alla scalabilita dell’intero
sistema.

In questo capitolo si analizzeranno in dettaglio le problematiche individuate du-
rante la progettazione e la sperimentazione del sistema, evidenziando le motivazioni

39

che hanno portato alla suddivisione della generazione in step distinti, alla defini-
zione di un grafo narrativo strutturato e all’introduzione di tecniche di validazione
automatica. Tale analisi costituisce le fondamenta su cui si basa I'implementazione
fornita nei capitoli successivi.

40

4.2 Complessita narrativa e struttura del grafo

La generazione automatica di storie videoludiche richiede un modello capace di rap-
presentare in modo formale gli elementi fondamentali della narrazione. Nel sistema
sviluppato, questa rappresentazione prende la forma di un grafo narrativo, composto
da nodi che descrivono eventi o stati della trama e da connessioni che esprimono re-
lazioni di progressione, causa-effetto o alternative narrative. Di seguito un esempio
di grafo minimo per la rappresentazione della struttura narrativa di base.

41

STORY FLOW

PreEvents (BackStory) FirstLevelSetup (Call to Adventure) SecondLevelSetup (Serious Business)
- »
» >
EventPreEventCard PlaceSetupCard

event: Prophecy

place: Palace
aspect: Secret

aspect: Cursed

SecondLevelConfrontation SecondLevelConfrontation FirstLevelConfrontation
(Masquerade) (Wangst) (Conflict)
)
<
ItemConfrontationCard MobConfroftationCard
item: Guard

aspect: hidden aspect: Disquised

SecondLevelResolution

ContinousClimax
(End)

v
v

MobResolutionCard
Mob: Monster
aspect: insane

EventFinalCard
Event: Death

1
I
I
|
|
I
1
I
I
|
I
I
|
I
1
I
|
I
I
1
1
1
I
I
I
|
|
1
I
I
I
I
|
1
1 item: key
1
I
I
|
I
1
1
I
I
I
|
|
|
1
|
I
|
I
I
1
|
|
|
I
: aspect: Dying
1

1

I

|

I

I

l

' CHARACTER DESCRIPTION

CharacterArchetype CharacterCharacteristic
type: LovableRogue (Antihero)

—"—

CharacterResult CharacterRole CharacterModifier
Protagonist type: Gulie

Figura 12: Minimal Example Graph Structure

42

Il grafo fornisce un supporto strutturale essenziale: da un lato permette di pro-
gettare una linea narrativa coerente, dall’altro introduce la possibilita di include-
re ramificazioni e percorsi alternativi tipici delle produzioni videoludiche moderne.
Tuttavia, il livello di complessita del grafo influenza in maniera decisiva la qualita
della narrazione generata dal modello, e determina il margine di variabilita che puo
essere effettivamente gestito.

4.2.1 Grafo semplice vs grafo complesso

Durante la sperimentazione del sistema sono emerse differenze significative legate
alla struttura del grafo narrativo.

Grafo semplice: maggiore coerenza, minore profondita Un grafo semplice
presenta poche ramificazioni, un numero ridotto di eventi chiave e una progressione
narrativa prevalentemente lineare. Quando I’Al opera su una struttura di questo
tipo, tende a garantire una buona coerenza interna: i personaggi mantengono ruoli
e comportamenti piu stabili, gli eventi seguono una logica prevedibile e il rischio
di contraddizioni diminuisce in modo significativo. Tuttavia, la semplicita della
struttura si traduce spesso in storie meno articolate, con limitata variabilita e scarsa
adattabilita a generi narrativi che richiedono scelte piu articolati, percorsi multipli o
evoluzioni complesse del protagonista. La narrazione appare quindi piu controllata
ma meno ricca.

Grafo complesso: maggiore profondita, minore stabilita Un grafo narrativo
complesso si caratterizza per un numero elevato di ramificazioni, percorsi alternativi
e intrecci tra eventi e personaggi. Questa struttura consente all’Al di generare storie
molto piu ricche, articolate e diversificate, con una profondita che si avvicina mag-
giormente alle produzioni videoludiche moderne. Tuttavia, la complessita introduce
anche un carico cognitivo che i modelli generativi riescono a gestire solo in parte.
Quando la trama si ramifica ampiamente:

il modello puo perdere riferimenti stabiliti in capitoli precedenti;
e la coerenza dei personaggi puo diventare instabile;
e alcuni eventi possono non allinearsi alla trama principale;

o aumentano le probabilita di incoerenze e contraddizioni tra diverse sezioni
della storia.

In altre parole, maggiore ¢ la profondita narrativa, minore e la stabilita che
il modello riesce a mantenere lungo l'intero sviluppo della trama. Da qui emerge
I'esigenza di un design che permetta di bilanciare varieta e coerenza, adottando

43

strategie come step generativi progressivi, vincoli strutturali piu rigidi e strumenti
di validazione dedicati.

4.2.2 Impatto della complessita sulla coerenza narrativa

L’aumento del numero di nodi e connessioni comporta una crescita delle informazioni
che ’AI deve gestire simultaneamente. Quando la struttura si espande, si osservano
difficolta specifiche che dipendono dalla capacita del modello di mantenere un quadro
narrativo globale. Uno dei problemi piu evidenti riguarda la continuita logica: il
modello puo perdere eventi precedenti o reinterpretare in modo errato relazioni di
causa-effetto, soprattutto quando queste dipendenze sono distanti tra loro. Anche
i personaggi risultano piu vulnerabili: cambiamenti improvvisi nelle motivazioni,
variazioni di tono o comportamenti ingiustificati appaiono piu spesso quando la
narrazione si ramifica.

La coerenza tra i capitoli ¢ un altro aspetto influenzato direttamente dalla com-
plessita. Con 'aumento delle diramazioni emergono differenze indesiderate nella de-
scrizione di luoghi, oggetti o relazioni, oppure generazioni ridondanti che duplicano
eventi gia accaduti. Le derive narrative, percorsi che si allontanano progressivamente
dai temi centrali, diventano piu frequenti.

Questi fenomeni hanno guidato la progettazione del sistema verso 'uso di step
generativi sequenziali, validatori automatici e embedding che fungano da “ancoraggi
semantici”. Inoltre, la progettazione del grafo utilizza ruoli narrativi espliciti, che
permettono al modello di muoversi all’interno di un contesto piu definito evitando
deviazioni non controllate.

44

4.3 Difficolta nella generazione di storie comples-
se e logicamente coerenti

La produzione di storie videoludiche tramite modelli generativi incontra limiti che
diventano particolarmente evidenti quando la trama richiede una continuita estesa
nel tempo o una gestione articolata delle relazioni tra personaggi ed eventi. Anche in
presenza di una buona struttura narrativa, il modello puo faticare a mantenere una
visione unitaria della storia, poiché non dispone di una memoria narrativa intrinseca
ma opera esclusivamente sul contesto fornito di volta in volta.

La causa principale e che i modelli generativi non possiedono una memoria narra-
tiva globale: ragionano soltanto sulla base del contesto immediatamente disponibile
nel prompt. Di conseguenza, quando la storia cresce e il contesto non puo piu essere
interamente fornito, la qualita logica della narrazione si degrada.

4.3.1 Caratterizzazione e stabilita dei personaggi

La costruzione di personaggi coerenti nel tempo ¢ un altro elemento delicato. Nei
videogiochi story-driven, i personaggi devono mantenere una psicologia riconosci-
bile, un’evoluzione credibile e un insieme di motivazioni stabili. Tuttavia, quando
la narrazione si sviluppa in molti capitoli o in percorsi ramificati, il modello puo
attribuire al personaggio comportamenti inattesi, modificare relazioni consolidate o
introdurre stati emotivi non coerenti con quanto stabilito nelle fasi precedenti.

Queste incoerenze risultano particolarmente problematiche quando la storia si
biforca o si sviluppa attraverso molte alternative: il modello tende a “resettare”
parte della caratterizzazione, trattando talvolta i percorsi alternativi come storie
indipendenti.

4.3.2 Scalabilita della narrazione

L’aumento della lunghezza e della ramificazione richiede prompt sempre piu ricchi
e dettagliati. Quando questi superano la capacita effettiva del modello di integrarli,
emergono ripetizioni, omissioni e semplificazioni non intenzionali. Oltre alle incoe-
renze logiche, si puo osservare un degrado stilistico: descrizioni meno variegate,
dialoghi piu generici e una perdita graduale di profondita tematica.

4.3.3 Sensibilita del modello al prompting

La qualita dell’output dipende fortemente dalla formulazione del prompt. Picco-
le variazioni nell’ordine, nella chiarezza o nella quantita delle informazioni possono
generare differenze significative nei contenuti prodotti. Questo rende necessario pro-
gettare prompt altamente controllati per ogni fase della pipeline, evitando ambiguita
che potrebbero introdurre incoerenze.

45

4.3.4 Differenziazione delle storie generate

Un limite ricorrente riguarda la tendenza dei modelli a produrre storie simili tra
loro. Anche modificando input e condizioni narrative, il modello converge spesso su
temi ricorrenti, archetipi comuni e strutture narrative gia note. Per ridurre questa
omogeneita, il sistema integra risorse basate su embedding e database narrativi piu
ampi, che forniscono un contesto piu ricco e stimolano il modello verso soluzioni
meno prevedibili. Nonostante cio, la varieta narrativa rimane influenzata dai limiti
dei modelli attuali.

46

4.4 Limitazioni tecnologiche dei modelli AI gene-
rativi

Le difficolta osservate nella generazione narrativa non dipendono esclusivamente
dalla complessita intrinseca delle storie videoludiche, ma sono anche il risultato di-
retto delle limitazioni tecnologiche dei modelli di intelligenza artificiale attualmente
disponibili. Sebbene i Large Language Models (LLM) abbiano compiuto enormi pro-
gressi negli ultimi anni, essi presentano ancora restrizioni strutturali che influenzano
in modo significativo la qualita, la coerenza e I'affidabilita delle narrazioni prodotte.
In questa sezione vengono analizzate le principali limitazioni riscontrate durante lo
sviluppo del sistema e il modo in cui tali limiti hanno influenzato il design della
pipeline multi-step.

4.4.1 Limiti dei LLM nel ragionamento a lungo termine

LLM utilizzato non possedendo un meccanismo interno che gli consenta di man-
tenere una rappresentazione consolidata della storia nel tempo. La sua capacita
di ragionamento dipende principalmente dal contenuto fornito nel prompt. Questo
vincolo diventa evidente quando la narrazione richiede di gestire elementi distanti
tra loro, come 'evoluzione di un personaggio o la progressione di un arco narrativo
complesso. Il modello non puo richiamare autonomamente informazioni passate se
non vengono esplicitamente reinserite nell’'input. Da cio deriva 'impossibilita, per
LLM, di funzionare come un “narratore globale” senza un supporto esterno.

4.4.2 Lentezza e costi computazionali

La generazione narrativa richiede spesso prompt voluminosi, numerose richieste se-
quenziali e operazioni di validazione che aumentano sensibilmente il tempo di ela-
borazione. A cio si aggiunge il costo computazionale del modello stesso: modelli piu
avanzati producono risultati qualitativi migliori, ma introducono tempi di risposta
piu elevati e un maggiore consumo di risorse.

Questa lentezza non rappresenta solo un ostacolo all’usabilita, ma influisce an-
che sulle scelte nella gestione della pipeline. Un approccio monolitico non sareb-
be realisticamente utilizzabile, e persino la suddivisione in step richiede un attento
bilanciamento tra qualita dell’output e tempi di elaborazione accettabili per I'utente.

4.4.3 Necessita del sistema a step

Le limitazioni descritte rendono impossibile affidare I'intera creazione della storia a
un unico passaggio. Una narrazione complessa, con struttura, capitoli, evoluzione
dei personaggi e coerenza globale, richiede un controllo progressivo, suddiviso in fasi
specializzate, ognuna progettata per ridurre il carico del modello e delimiatare il

47

contesto operativo. La suddivisione del processo in piu step risponde alle seguenti
esigenze:

e ridurre il carico del modello distribuendo la complessita;

 fornire contesti delimitati e specifici per ogni fase;

permettere verifiche intermedie della coerenza;

o introdurre controlli automatici che intercettano errori prima che si propaghino
allo step successivo.

Ogni fase della pipeline ha quindi una funzione specifica: la struttura narrativa
imposta la radice narrativa, i capitoli definiscono la progressione, la storia dettaglia-
ta sviluppa i contenuti e la validazione corregge gli errori generati in precedenza.
Questo approccio ¢ stato scelto come diretta conseguenza dei limiti operativi dei

modelli Al.

4.4.4 Dipendenza dalle tecnologie disponibili

Le capacita effettive di generazione dipendono fortemente dal modello utilizzato.
Esistono differenze significative tra modelli gratuiti, modelli commerciali e modelli
specializzati, sia in termini di qualita dell’output sia nella capacita di sostenere
contesti estesi.

Durante lo sviluppo del sistema e stato necessario operare entro i limiti dei
modelli gratuiti disponibili, adottando soluzioni progettuali che compensassero le
loro debolezze. E ragionevole prevedere che modelli futuri, pitt performanti o dedicati
allo storytelling, possano ridurre significativamente molti dei limiti attuali. Tuttavia,
al momento della realizzazione, tali vincoli hanno rappresentato una componente
fondamentale del design.

48

4.5 Problematiche del prompting

Il prompting costituisce uno degli aspetti piu critici nella progettazione di sistemi
basati su modelli generativi. La qualita dell’output dipende infatti in modo diretto
dalla precisione, dalla struttura e dalla coerenza semantica del prompt, che agisce
come ponte tra l'intenzionalita dell’'utente e 'interpretazione del modello. Durante
lo sviluppo del sistema, il prompting si e rivelato un elemento centrale, capace di
influenzare profondamente 'intera pipeline.

4.5.1 Sensibilita dei modelli al prompt

I modelli linguistici generativi mostrano una forte dipendenza dalla forma e dalla
struttura delle istruzioni ricevute. Variando 'ordine delle informazioni, la granula-
rita dei vincoli o il livello di dettaglio, il modello puo produrre risultati molto diversi
pur in presenza di contenuti simili. Tale sensibilita si manifesta soprattutto quando
il prompt deve integrare molteplici elementi narrativi: personaggi, obiettivi, tono
emotivo, vincoli strutturali e collegamenti con capitoli precedenti.

Un prompt troppo generico puo portare il modello a interpretare liberamente
la storia, introducendo elementi non desiderati. Al contrario, un prompt eccessiva-
mente dettagliato puo ridurre la varieta e la naturalezza della narrazione. Trovare
un equilibrio tra guida e liberta espressiva diventa dunque essenziale.

Inoltre la lunghezza del prompt influenza la qualita della storia generata. Quan-
do la quantita di informazioni necessarie supera una certa soglia, il modello puo
ignorare parti del contesto o enfatizzare dettagli minori in modo imprevedibile. La
progettazione dei prompt deve quindi essere attenta, calibrata e adattata al livel-
lo narrativo trattato. E quindi necessario enfatizzare la necessita di utilizzare una
struttura multi step, suddividendo il prompt per funzionalita.

4.5.2 Differenziazione degli aspetti narrativi

Un ulteriore problema riguarda la capacita del prompt di orientare il modello verso
storie realmente diverse tra loro. Sebbene un LLM possa generare infinite varia-
zioni superficiali, tende spesso a riutilizzare strutture narrative ricorrenti, archetipi
comuni e schemi probabilistici consolidati. Il risultato e una variabilita limitata, so-
prattutto quando la storia richiede originalita tematica o una forte personalizzazione
dei personaggi.

Senza un prompting mirato, le narrazioni risultano spesso troppo simili, sia nel-
la progressione degli eventi sia nella natura dei conflitti o delle motivazioni dei
personaggi. Per contrastare questa tendenza, il sistema utilizza basi dati struttura-
te, embedding narrativi e documenti di riferimento che ampliano i possibili spunti
narrativi a disposizione del modello.

49

4.5.3 Impatto sul design dell’intero sistema

La complessita del prompting ha avuto un impatto diretto sul design complessivo
del sistema. La necessita di fornire al modello istruzioni precise ma non limitanti
ha portato a:

suddividere il processo generativo in step con prompt dedicati;
e definire un formato di output uniforme e facilmente validabile;
o integrare vincoli narrativi esplicitati nei documenti strutturati;
 introdurre validatori che intercettano deviazioni o fraintendimenti del prompt;

e costruire un ambiente controllato in cui il modello opera con un contesto
definito.

Le problematiche del prompting mostrano che la generazione narrativa non puo
essere lasciata alla sola creativita del modello, ma richiede una regia precisa e consa-
pevole. La qualita dell’intera pipeline dipende dalla capacita di strutturare prompt
che siano chiari, completi e calibrati per il livello narrativo trattato.

20

4.6 Problemi di coerenza interna

Nonostante la pipeline multi-step e 'uso di strutture narrative controllate, la ge-
nerazione automatica di storie presenta inevitabilmente alcune incoerenze interne.
Queste non derivano da errori del sistema in sé, ma dai limiti strutturali dei modelli
linguistici.

In particolare, durante la sperimentazione sono emersi fenomeni ricorrenti come
incoerenze temporali, variazioni non giustificate nella caratterizzazione dei perso-
naggi, contraddizioni tra capitoli generati separatamente e discontinuita stilistiche.
Si tratta di comportamenti tipici dei modelli generativi quando operano su narra-
zioni estese o articolate, e non possono essere completamente evitati attraverso il
prompting o 'uso di documenti strutturati.

4.6.1 Il ruolo dei validatori nella gestione della coerenza

Per affrontare i problemi descritti e stato necessario introdurre un sistema di con-
trollo e correzione basato su due validatori:

o Il Label Validator interviene sugli elementi semantici, verificando che perso-
naggi, oggetti narrativi, luoghi e relazioni siano utilizzati in modo coerente e
uniforme.

o Il Flow Validator si concentra invece sulla continuita tra i capitoli, individuan-
do conflitti temporali, incoerenze negli eventi e derive narrative.

Questi strumenti non eliminano completamente le incoerenze, ma riducono sen-
sibilmente la loro frequenza e impattano positivamente sulla leggibilita e stabilita
della storia finale.

Essi rappresentano una risposta necessaria ai limiti dei modelli Al, integrando
un livello di controllo “human-like” che I’AI non possiede nativamente.

51

4.7 Limiti di utilizzo del sistema

Nonostante la progettazione modulare, il sistema sviluppato presenta alcuni limiti
legati sia alla natura dei modelli generativi, sia alle scelte adottate per garantire
coerenza e controllabilita. Questi limiti ne definiscono con chiarezza il campo di ap-
plicazione, indicando quali contesti risultano piu adatti e quali potrebbero richiedere
estensioni o adattamenti futuri.

4.7.1 Focalizzazione sui videogiochi story-driven

Il sistema & stato progettato principalmente per supportare videogiochi con una forte
componente narrativa. Le pipeline multi-step, la struttura del grafo, gli strumenti
di validazione e i meccanismi di embedding rispondono alle esigenze tipiche degli
story-driven games, nei quali:

e la trama costituisce il nucleo dell’esperienza;
e i personaggi hanno ruoli e archi narrativi definiti;

o gli eventi si sviluppano secondo un ordine coerente.

Questa focalizzazione implica che il sistema non e attualmente ottimizzato per
generare contenuti per generi videoludici dove la narrativa non svolge un ruolo cen-
trale. Pur essendo tecnicamente possibile utilizzare il sistema per generare storie
di qualunque tipo, la sua efficacia diminuisce in ambienti in cui la narrazione non
segue quella definita nel sistema.

4.7.2 Dipendenza dalla qualita dei documenti di supporto

La qualita delle storie generate e fortemente influenzata dai contenuti presenti nei
documenti di riferimento. Se la base di dati e troppo limitata, non copre adegua-
tamente un genere narrativo o contiene archetipi troppo generici allora anche la
generazione dell’ Al risultera meno ricca e meno diversificata.

Questo limite evidenzia il ruolo centrale dell’embedding semantico e del con-
testo strutturato: il sistema opera come un modello guidato da un repertorio di
informazioni esplicite. In assenza di una base dati adeguatamente ampia, la varieta
narrativa rimane limitata.

52

4.8 Complessita e prestazioni del sistema

La generazione automatica di storie videoludiche richiede un sistema capace di ge-
stire una considerevole quantita di elaborazioni interne. La complessita narrativa
e quella computazionale avanzano infatti parallelamente: piu articolata e la sto-
ria, maggiore ¢ lo sforzo richiesto al sistema per elaborarla, verificarla e mantenerla
coerente. Per questo motivo, durante la fase di progettazione ¢ stato necessario
analizzare attentamente 'impatto della complessita sulla qualita della generazione
e sulle prestazioni complessive della pipeline.

4.8.1 Complessita computazionale delle pipeline multi-step

La pipeline multi-step adottata nel sistema, che prevede la generazione della strut-
tura, dei capitoli, del testo dettagliato e infine la validazione, e stata pensata per
distribuire la complessita del compito. Ogni step lavora su un insieme specifico di
informazioni e garantisce maggiore controllo sulla coerenza. Tuttavia, questa ar-
chitettura comporta un carico computazionale superiore rispetto a una generazione
monolitica: ogni passaggio richiede tempo, produce dati intermedi da analizzare e
puo richiedere correzioni o rigenerazioni parziali.

Anche se questa soluzione ¢ piu lenta, rappresenta un approccio realistico per
mantenere un livello accettabile di qualita narrativa e di stabilita complessiva del
racconto generato.

4.8.2 Responsivita del sistema e percezione dell’utente

Dal punto di vista dell’'utente, non e soltanto la velocita effettiva a determinare la
qualita dell’esperienza, ma anche la percezione di reattivita del sistema. Per questo
motivo il backend utilizza un sistema multithread che evita il blocco dell’interfaccia
e consente di monitorare 'avanzamento degli step.

Nonostante cio, storie molto lunghe o dotate di molte ramificazioni possono ri-
chiedere un tempo di elaborazione significativo. La sensazione di “lentezza” puo
dunque emergere quando il modello deve processare una grande quantita di con-
testo, quando si utilizzano modelli particolarmente pesanti o quando i validatori
rilevano errori che richiedono una rigenerazione del contenuto.

La complessita narrativa e quella computazionale sono due aspetti inseparabi-
li del sistema. La generazione di storie articolate richiede un investimento com-
putazionale elevato, determinato tanto dai limiti intrinseci dei modelli AI quanto
dalla necessita di controllare in modo progressivo e rigoroso la coerenza narrativa.
La pipeline multi-step, i validatori e la struttura del grafo aggiungono lavoro ex-
tra, ma rappresentano strumenti indispensabili per ottenere storie solide, coerenti e
utilizzabili in un contesto videoludico.

23

4.9 Necessita della suddivisione in step

La suddivisione in step rappresenta uno degli elementi centrali del sistema sviluppa-
to. La generazione di una storia completa, articolata, coerente e strutturata richiede
infatti un processo progressivo, suddiviso in livelli di astrazione differenti, ciascuno
con obiettivi specifici. Senza questa suddivisione, la qualita del racconto prodotto
decadrebbe rapidamente, rendendo impossibile controllare la coerenza logica tra i
vari elementi della storia.

4.9.1 Complessita crescente e impossibilita della generazio-
ne monolitica

Una generazione monolitica sarebbe, almeno in teoria, la soluzione piu semplice:
un prompt completo e una singola risposta che produca l'intera storia. Tuttavia,
questo approccio e impraticabile per due motivi fondamentali. Da un lato, il modello
non puo gestire simultaneamente tutte le informazioni richieste per una narrazione
complessa; dall’altro, un prompt eccessivamente lungo porta il modello a ignorare
parte del contesto o a reinterpretarlo in modo errato.

L’assenza di controlli intermedi farebbe inoltre si che eventuali incoerenze intro-
dotte nelle prime fasi si propagherebbero fino al risultato finale. In altre parole,
un errore iniziale comprometterebbe l'intera narrazione, costringendo a rigenerare
tutto il contenuto.

4.9.2 Controllo della narrazione a livelli diversi

Ogni fase della pipeline affronta un livello distinto della narrazione e richiede un tipo
di ragionamento diverso. La struttura narrativa fornisce la base, definendo eventi
principali e turning point; i capitoli ne articolano il ritmo; la storia dettagliata
arricchisce il tutto con dialoghi, emozioni e descrizioni; i validatori, infine, verificano
che I'insieme sia coerente.

Ridurre questi livelli a un unico passaggio significherebbe sacrificare il controllo
e la qualita del risultato, oltre a ridurre la granularita con cui e possibile gestire e
correggere eventuali incoerenze.

4.9.3 Riduzione degli errori tramite generazione progressiva

La suddivisione in step permette di intercettare errori e deviazioni prima che diven-
tino problematiche. Una struttura narrativa incoerente puo essere corretta prima
di generare i capitoli; un capitolo problematico puo essere sistemato senza dover
rigenerare l'intera storia; un evento fuori posto puo essere ridefinito senza compro-
metterne altri gia verificati. Questo approccio progressivo consente di individuare
precocemente le incoerenze e impedire che si propaghino agli step successivi.

o4

4.9.4 Maggiore flessibilita e adattabilita

Un ulteriore vantaggio della suddivisione in step e la maggiore flessibilita progettuale.
Ogni fase puo essere modificata, estesa o migliorata in maniera indipendente. Ad
esempio, e possibile:

« sostituire il modello AT utilizzato in uno specifico step;
o introdurre nuovi moduli di generazione (come side quest o dialoghi);

« modificare il livello di dettaglio dei capitoli senza toccare la struttura narrativa.

La modularita non ¢ dunque un semplice beneficio aggiuntivo, ma una compo-
nente essenziale per garantire scalabilita e adattabilita a futuri sviluppi.

4.9.5 Riduzione del carico cognitivo del modello AI

Un modello generativo opera sempre in base al contesto fornito nel prompt. Se
questo contesto e troppo ampio o caotico, il modello perde parte delle informazioni,
interpreta elementi in modo errato o produce risposte incongruenti. La suddivisione
in step consente invece di fornire all’Al un contesto ridotto, mirato e specifico per
la fase considerata.

In questo modo il modello lavora in condizioni piu favorevoli, riducendo la
probabilita di incoerenze e migliorando la qualita del testo generato.

95

56

Capitolo 5

Implementazione del sistema

5.1 Introduzione

A partire dal modello concettuale della pipeline narrativa multi-step descritta nei
capitoli precedenti, e stato sviluppato un prototipo funzionante che integra: il mo-
dello di intelligenza artificiale generativa, strutture dati narrative, fonti teoriche,
servizi REST e un’interfaccia utente realizzata in Unreal Engine.

La fase implementativa ¢ stata progettata in stretta continuita con le considera-
zioni emerse durante I’analisi del problema: la suddivisione del processo in piu step,
I'utilizzo di strutture narrative specifiche, I'impiego di embedding e di modelli Al
esterni solo elementi dettati dalle varie considerazioni fatte.

Dal punto di vista tecnologico, il sistema si basa su un’architettura client—server.
Il backend, sviluppato in Python, funge da motore narrativo e gestisce l'intera pi-
peline di generazione attraverso una serie di moduli specializzati: creazione della
struttura narrativa (Step 1), generazione dei capitoli (Step 2), stesura della storia
dettagliata (Step 3) e validazione automatica (Step 4). Ogni modulo dialoga con il
modello di intelligenza artificiale esterno (Gemini 2.5 Flash) tramite prompt strut-
turati e produce output in formato JSON, pensati per essere riutilizzati negli step
successivi.

Il frontend, realizzato in Unreal Engine, espone tali funzionalita all’'utente attra-
verso una serie di widget dedicati, permettendo di configurare i parametri principali
(titolo, genere, complessita narrativa), avviare i diversi step di generazione, visua-
lizzare i risultati testuali e ispezionare la struttura complessiva della storia. La
comunicazione tra frontend e backend avviene mediante servizi REST |, che fungono
da intermediari tra le richieste dell’utente e I'esecuzione dei processi di generazione
e validazione.

In questo capitolo verranno descritte nel dettaglio le scelte implementative adot-
tate, partendo da una panoramica generale del sistema e del suo diagramma archi-
tetturale per poi concentrarsi sui singoli step della pipeline.

o7

5.2 Descrizione generale del sistema

5.2.1 Backend

Il backend rappresenta il core computazionale dell’intero progetto ed e responsabile
dell’elaborazione narrativa, della comunicazione con il modello Al e della gestione
della pipeline multi-step. E stato sviluppato in Python per sfruttare la sua flessibi-
lita, la disponibilita di librerie per il trattamento del linguaggio naturale e la facilita
di integrazione con servizi REST.

Il backend esegue quattro funzioni principali, corrispondenti agli step della pipe-
line:

1. Generazione della struttura narrativa (Step 1): mediante il modulo
stepl_structure.py;

2. Generazione dei capitoli narrativi (Step 2): tramite step2_chapters.py;
3. Creazione della storia dettagliata (Step 3): implementato in step3_story.py;

4. Validazione logica e semantica (Step 4): suddivisa in due moduli:
step4_label validator.py e step4_flow_validator.py.

5. Generazione sintesi storia (Step 5): tramite il modulo step5_summary . py.

Ogni modulo della pipeline e progettato per operare in modo autonomo e produr-
re un output strutturato in formato JSON, cosi da poter essere riutilizzato dallo step
successivo. Questo design riduce il rischio che errori locali compromettano I'intero
processo e permette di intervenire su una singola fase senza modificare le altre.

La comunicazione tra backend e frontend avviene tramite servizi REST imple-
mentati in server_jobs_main.py. Il server espone endpoint dedicati per ciascuno
step e utilizza un sistema multithread per gestire richieste concorrenti, evitando che
I’elaborazione di una storia complessa blocchi il flusso di lavoro dell’utente. E inoltre
presente un sistema di logging che consente di monitorare lo stato di avanzamento
dei processi e di identificare eventuali anomalie durante la generazione e validazione.

5.2.2 Frontend

Il frontend del sistema ¢ realizzato in Unreal Engine. L’interfaccia ¢ composta da
widget che consentono all'utente di:

 configurare i parametri iniziali (titolo, genere, complessita, descrizione della
storia);

e avviare ciascuno dei cinque step della pipeline;

o8

 visualizzare i risultati generati, sia in forma testuale sia grafica;

I1 frontend non contiene logica funzionale: la sua funzione ¢ esclusivamente quella
di gestire 'interazione con 'utente e inviare le richieste al backend tramite chiamate
REST. Tale separazione garantisce leggerezza, indipendenza dal modello Al utiliz-
zato e facilita di integrazione con eventuali strumenti futuri. Inoltre, la scelta di
Unreal permette di immaginare, in un’eventuale estensione del progetto, un’inte-
grazione diretta tra la storia generata e il mondo di gioco, facilitando test rapidi o
prototipazioni narrative.

5.3 Diagramma dell’architettura del sistema

Per rappresentare in modo chiaro 'organizzazione interna del sistema e le interazioni
tra le sue componenti principali, ¢ stato realizzato un diagramma architetturale che
illustra il flusso dei dati, la suddivisione tra frontend e backend e il ruolo dei diversi
moduli che compongono la pipeline narrativa.

29

UI LAYER

GENERATE

L J

SUMMARY

Selected Step
+ Structure
. Chapters
- Story
- Validation
Complexity Level

| Selected Story

L
I N
REST API LAYER
i Vo .
1 R 1
1 1
1 1
1 POST API /step1 POST API /step2 POST API /step3 POST API /step4 1 POST API /step5
1 1
1 1
1 1
1 Story Description Structure json el 1 or
Chapters.json
I mplexity Story Description 1 Story fixed json
0 Story Description .
1 1
1 . 1
RESOURCES LAYER
- N ~ ~\
s s !
STEP1 STEP2 STEP 3 STEP 4 STEP 4
Resources Resources Resources Resources Resources
J J J \
Narrative json
Narrative Json Narrative Json . Storyjson or
- Storyjson - storyjson S @ Story fixedjson
- Charactersjson - Characters.json s
« cardsjson + Cardsjson s Gmemtery
- structurejson 5 Er—ae
\ J J J
- N ~N =)
~ s
STEP1 STEP2 STEP 3
Embedding Embedding Embedding
. L L
RAG + VectorStore RAG + VectorStore RAG + VectorStore
- Structure Examples - Chapters Examples - Story Examples
- Theoretical Docs - Theoretical Docs + Theoretical Docs
\ J J \
Input Input Input Input Input
CONTEXT LAYER
L2 Y
s s n s N
STEP 4
STEP1 STEP 2 STEP3 Label Prompt Building STEPS
Prompt Building Prompt Building Prompt Building Prompt Building
\ J _ J
Prompt Structure STEF4
Prompt Structure Prompt Structure . Marrative Json Label Prompt Building Prompt Structure
+ Narrative json + Narrative json - Embedded docs - or
+ Embedded docs - Embedded docs . Prompt policies Story_fixed.json
+ Prompt policies - Prompt policies - Story Description Prompt Structure
- Story Description - Story Deseription « structure.json + Prompt policies
- Complexity Profile - Structurejson + Chapters.json
- Nap Palicy
T T T T
Input Input Input Input Input Input
AI MODEL LAYER I
h 4 i r L
s ' 's ~
STEP1 STEP2 STEP 3 STEP 4 STEP 3
Model Request Model Request Model Request Model Request Model Request
Model Used Model Used Model Used Model Used Model Used
- Gemini 2.5 Flash - Gemini 2.5 Flash - Gemini 2.5 Flash - Gemini 2.5 Flash - Gemini 2.5 Flash
J X J J
I [|
Output Qutput Chapter X Output For each chapter Chapter X Issues For each chapter Output
1 1
~ 2V a ~ ~N ~ s ™
STEP1 STEP 2 STEP3 STEP 4 STEPS
Model Response Model Response Model Response Madel Response Model Response
T T L— T T T
I 1 | | 1
1 1
v v A 4 h 4
validate and validate and [Validate and] [Validate and] validate and
Normalize Normalize
Normalize Normalize . r Normalize
T T Lol 8 |
L L Y Y !
Y A 4
Chapter X json Chapter_Xjson
Structure json Chapters.json Summary.json
When all chapters generated When all chapters verified
\ J J
| | | Sory. eaison |
o v

Figura 13: StoryGEN AI Architecture

60

Il diagramma evidenzia una struttura basata su due livelli distinti:

5.3.1 Livello Backend

Il backend, gestisce tutte le operazioni computazionali legate alla generazione e alla
validazione della storia. Comprende:

o Server REST, definito nel modulo server_jobs_main.py, che espone end-
point specifici per ciascun step della pipeline;

e Moduli di generazione (stepl_structure.py, step2_chapters.py, step3_story.py),
responsabili delle tre fasi della produzione narrativa;

« Moduli di validazione (step4_label_validator.py, step4_flow_validator.py),
dedicati al controllo semantico e logico della storia generata;

e Moduli di sintesi (step5_summary.py dedicato alla generazione di una sin-
tesi della storia generata includendo elementi di gameplay utili per il designer;

« Database narrativi JSON (Story. json, Characters.json, Cards. json)
che rappresentano il contesto strutturato utilizzato dall’Al,

» Sistema di embedding, integrato per consentire al modello Al di ancorarsi
a risorse semantiche esterne oltre il semplice prompt;

e Thread Manager, incaricato di avviare le elaborazioni in processi indi-

pendenti, evitando blocchi dell’intero server durante le chiamate ai modelli
Al

5.3.2 Livello Frontend

Il frontend, rappresenta lo strato di interazione del sistema.ll diagramma mette in
evidenza:

o« Widget di controllo, che permettono all’'utente di selezionare la comples-
sita narrativa, specificare titolo e descrizione della storia, scegliere lo step da
eseguire e consultare gli output;

e Modulo di comunicazione REST, responsabile dell’invio delle richieste al
server Python;

e Modulo di visualizzazione, che mostra la struttura narrativa generata
(come il grafo prodotto dallo Step 1), i capitoli e la storia dettagliata.

61

5.3.3 Flusso dei dati

Il diagramma descrive anche il flusso operativo:

1. L’utente interagisce con il frontend e invia una richiesta al server.

2. Il backend elabora la richiesta applicando lo step corrispondente della pipeline
narrativa.

3. Il modello Al viene interrogato tramite prompt specializzati.

4. 11 backend elabora la risposta, la valida e genera eventuali output grafici (come
la visualizzazione del grafo).

5. Il risultato viene restituito al frontend e mostrato all’'utente.

5.4 Implementazione dello Step 1: Generazione
della struttura narrativa

5.4.1 Come viene generata una struttura narrativa

Lo Step 1 rappresenta la fase fondamentale della pipeline, poiché definisce la strut-
tura base della storia attraverso un insieme di nodi narrativi e relazioni. L’obiettivo
dello step ¢ generare una rappresentazione astratta della trama che sia formalmente
strutturata, coerente con il contesto narrativo fornito dall’utente e adatta agli step
successivi della pipeline. La generazione della struttura avviene tramite il model-
lo di intelligenza artificiale (Gemini 2.5 Flash) e segue un processo guidato da tre
elementi principali:

1. Il prompt template, costruito dinamicamente sulla base dei file narrativi
(Cards.json, Characters.json, Story.json).

2. 11 livello di complessita scelto dall’utente, che determina il numero di
nodi da generare.

3. Le regole strutturali fornite al modello, come la suddivisione in tre atti
e la presenza di specifiche categorie di nodi.

Il risultato finale & una struttura narrativa espressa in formato JSON, contenente
una lista di nodi e una lista di relazioni tra tali nodi. Ogni nodo rappresenta un
elemento narrativo funzionale (intro, conflitto, turning point, climax, ecc.), mentre
le relazioni descrivono la progressione della trama e le eventuali ramificazioni.

62

5.4.2 Logica implementativa e flusso operativo

Tutto il processo ¢ implementato nel modulo stepl_structure.py e segue una
sequenza di operazioni ben definite che trasformano i dati forniti dall’utente e i file
narrativi del sistema in una struttura formale utilizzabile negli step successivi.

I1 flusso operativo puo essere descritto in modo lineare, poiché ogni fase prepara
i dati necessari per quella successiva. Il sistema inizia con la raccolta del contesto
narrativo, includendo il titolo della storia, la descrizione iniziale, e le informazioni
narrative provenienti dai file Story. json, Characters. json e Cards. json. Questi
dati forniscono al modello AT un insieme di vincoli, archetipi e risorse semantiche
che guidano la generazione.

Una volta estratto il contesto, il sistema costruisce dinamicamente il prompt,
integrando:

1. titolo, descrizione iniziale fornita dall’utente,
2. le informazioni narrative strutturate,
3. il profilo di complessita determinato dallo slider selezionato dall’utente,

4. le regole formali che definiscono la struttura a tre atti e i tipi di nodi che
devono essere generati.

Il prompt cosi composto viene inviato al modello Al per richiedere la generazione
della struttura narrativa completa. Il backend riceve quindi 'output del modello e
procede al parsing e alla normalizzazione, convertendo il risultato in un file JSON
valido. Una volta validato 'output, il sistema elabora la versione grafica della strut-
tura tramite il modulo GraphVisualizer.py. Questa rappresentazione permette di
visualizzare nodi, connessioni e distribuzione degli atti, tramite un sistema visivo.

Utilizzo dei file JSON narrativi

La generazione della struttura narrativa nello Step 1 e guidata da tre principali fonti
di informazione strutturata: Story. json, Characters. json e Cards. json. Questi
file contengono rispettivamente:

e Story.json: informazioni sui temi narrativi, archetipi, tropi e strutture comuni
della storia.

o Characters.json: descrizioni dei personaggi, ruoli narrativi, tratti psicologici,
obiettivi, relazioni.

o Cards.json: elementi contestuali (luoghi, oggetti, eventi ricorrenti, atmosfere
narrative, minacce, risorse).

63

La loro funzione principale e fornire al modello Al un contesto coerente e ricco di
informazioni, riducendo la variabilita eccessiva del modello e migliorando la coerenza
semantica.

Questi file non sono stati creati arbitrariamente, ma derivano da un processo
di estrazione e rielaborazione della tesi GHOST, un sistema narrativo che utilizza-
va 'nodi concettuali" per descrivere elementi ricorrenti della narrazione. Durante
I’esecuzione dello step, questi file vengono caricati e integrati nel prompt come bloc-
chi di conoscenza semantica, cosi da ancorare la generazione ai vincoli e ai principi
narrativi definiti dal sistema.

5.4.3 Struttura dei file narrativi: Story, Characters e Cards
Story.json: modello della struttura narrativa

Il file Story. json definisce lo schema astratto della storia in termini di fasi e tipi di
nodi narrativi. Alla radice & presente il nodo "Story", che contiene:

 una descrizione generale della storia (Story_description);

o tre macro—sezioni corrispondenti agli atti classici: Setup, Confrontation e
Resolution.

Ciascuna di queste sezioni descrive una parte specifica della struttura a tre atti
e contiene a sua volta insiemi di nodi parametrizzati. Ad esempio, la sezione Setup
¢ organizzata come segue:

"Story": {
"Story_description": "...",
"Setup": {
"Setup_description": "...",
"PreEvents {id}": { ... },
"FirstLevelSetup_{id}": { ... },
"SecondLevelSetup_{id}": { ... }

Ogni sotto—blocco (ad esempio PreEvents_{id} o FirstLevelSetup_{id}) rap-
presenta una famiglia di nodi avente una funzione narrativa specifica. Nel caso di
PreEvents_{id}, ad esempio, troviamo:

"PreEvents {id}": {
"PreEvents_description": "Describes events prior to the narrative...",

64

"type": [
"Backstory",
"Prequel"
1,
"type_description": {
"Backstory": "Background events or context from before the story begins...",
"Prequel": "Past events specifically related to characters..."
3,
"card": {
"type": [
"eventCard",
"itemCard",
"mobCard",
"placeCard"
1,
"type_description": {
"eventCard": "Significant events that influence the start...",
"itemCard": "Objects that influence / describe the pre-narrative events",
"mobCard": "Entities present before the main story begins.",
"placeCard": "Places relevant to the initial setting or pre-events."
3,
"connections out": [...],
"routes": [...]
3,
"connection out": [...],
"routes": [...]

Gli elementi piu rilevanti sono:

o type: l'insieme dei tipi di nodo possibili per quella famiglia (es. Backstory,
Prequel);

e type_description: una descrizione semantica di ciascun tipo, utilizzata dal
modello Al come guida,;

o card: il legame con le card contestuali (eventi, oggetti, mob, luoghi) definite
in Cards. json;

e connection_out e routes: indicazioni di connettivita, usate per definire come
quel tipo di nodo puo collegarsi ad altri nella struttura complessiva.

Strutture simili sono presenti in Confrontation e Resolution, con blocchi quali:

65

e FirstLevelConfrontation {id}, SecondLevelConfrontation {id} per la
fase di conflitto;

e FirstLevelResolution {id}, SecondLevelResolution {id}, ContinuousClimax {id},
ClimaxEvent_{id} per la fase di risoluzione.

Nel complesso, Story. json fornisce un meta—modello della struttura narrativa:
non descrive una singola storia, ma una famiglia di possibili storie, specificando
quali tipi di nodi possono esistere in ciascun atto, come sono caratterizzati e come
possono collegarsi tra loro. Lo Step 1 utilizza queste informazioni nel prompt per
istruire il modello su:

o quali tipi di nodi scegliere per ciascun atto;
e come differenziare i nodi di setup, conflitto e risoluzione;

e come generare una struttura che rispetti la progressione logica definita dal
modello di base.

Characters.json: modello dei personaggi

Il file Characters. json definisce un modello astratto per la costruzione dei perso-
naggi. Alla radice troviamo il blocco "Character_{id}", che non rappresenta un
singolo personaggio, ma un prototipo di come un personaggio puo essere descritto
combinando:

o archetipi (CharacterArchetype_{id});

o allineamenti e caratteristiche (CharacterCharacteristic_{id});
« ruolo narrativo (CharacterRole_{id});

« modificatori (CharacterModifier_{id});

o risultato finale (CharacterResults_{id}).

La struttura complessiva ¢ del tipo:

"Character {id}": {
"Character_description": "...",

"CharacterArchetype {id}": { ... },
"CharacterCharacteristic_{id}": { ... },
"CharacterRole {id}": { ... I},
"CharacterModifier {id}": { ... },
"CharacterResults {id}": { ... }

66

Ogni sotto-blocco rappresenta una porzione di identita del personaggio. Ad
esempio, CharacterArchetype_{id} contiene:

"CharacterArchetype {id}": {
"CharacterArchetype_description": "..."
"type": [

"MadScientist",
"StarCrossedLovers",
"Tsundere",
"Storyteller",
"Mooks",
"EccentricMentor",

1,

"type_description": {
"MadScientist": "An obsessive and brilliant character driven by...",
"StarCrossedLovers": "..."

b

3,
"connection out": [...],
"routes": [...]

In modo analogo, CharacterCharacteristic_{id} organizza gli allineamenti in
categorie come HeroesAlignment e VillainsAlignment, ciascuna con un elenco di
possibili valori (es. Hero, ChosenOne, Antihero per gli eroi):

"CharacterCharacteristic_{id}": {
"HeroesAlignment": [
"Hero",
"KnightInShineArmor",
"ChosenOne",
"Determinator",

1,
"HeroesAlignment_description": {
"Hero": "The central character who undertakes the adventure...",

+s
"VillainsAlignment": [...],
"VillainsAlignment_description": {...},
"alignment": "..."

3

67

"connection out": [...],
"connection_in": [...],
"routes": [...]

La sezione CharacterRole {id} definisce invece il ruolo drammatico

"CharacterRole {id}": {
"CharacterRole_description": "...",
"type": [

"Protagonist",
"Antagonist",
"TheWoobie",
"CloudCuckoolander",

1,
"type_description": {
"Protagonist": "The main character driving the story...",
"Antagonist": "The opposing force or character challenging the protagonist...",

+s
"connection out": [...],
"routes": [...]

Infine, CharacterModifier_{id} introduce modificatori (es. Kid, Tragic, Supe-
rHero) che raffinano ulteriormente il profilo del personaggio, mentre CharacterResults_{id}
descrive la sintesi finale:

"CharacterResults_{id}": {
"CharacterResults_description": "...",
"connection_in": [

"Archetype",
"Alignment",
"Characteristics",
|lRolel|
"Modifier"
1,
Ilnamell : nn
"description": ""

68

In termini funzionali, Characters. json non contiene “personaggi pronti”, ma un
insieme di categorie e combinazioni possibili. Lo Step 1 utilizza queste informazioni
per:

o definire nodi narrativi centrati su personaggi (es. nodi in cui il focus ¢ l'arco
del protagonista o il ruolo dell’antagonista);

o arricchire la struttura con riferimenti a ruoli, archetipi e dinamiche di perso-
naggi coerenti;
Cards.json: contesto, eventi, oggetti, luoghi e side quest

Il file Cards. json definisce gli elementi modulari che caratterizzano il contesto del-
la storia: eventi, oggetti, creature, luoghi e possibili side quest. E organizzato
principalmente in due blocchi:

e "Cards": contiene le card principali suddivise in quattro categorie:

— EventCards,

ItemCards,
MobCards,

PlaceCards;

o "SideQuest_{id}": definisce informazioni strutturali relative alle quest se-
condarie.

Ogni famiglia di card & ulteriormente suddivisa per fase della storia (pre—events,
setup, confrontation, resolution, quest). Ad esempio, per gli eventi:

"EventCards": {

"EventPreEventsCard {id}": { ... },
"EventSetupCard_{id}": { ... },
"EventConfrontationCard_{id}": { ... },
"EventResolutionCard {id}": { ... },
"EventFinalCard {id}": { ... 1},
"EventQuestCard_{id}": { ... }

Ogni card contiene tipicamente due liste principali:

 una lista di elementi (eventi, oggetti, mob o luoghi);

« una lista di aspetti narrativi (aspetti tematici o descrittivi applicabili).

69

Ad esempio, una card di setup per gli eventi e strutturata come:

"EventSetupCard {id}": {

"events": [
"HardTimes",
"Contest",
"Storm",
"Dream",
"Escape",
"Fight",
"Meet",
"Hurt",
"Chase",
"FallInLove",
"Death",
"ObjectBreak",
"Transformation",
"Rescue",
"Fire",
"Prophecy",
"Pursuit",
"Imprison"

1,

"aspects": [
"Cursed",
"Disguised",
"Evil",
"Hidden",
"Insane",
"Invisible",
"Lost",

1,
"connections_in": [...]

3

In modo analogo, le card degli oggetti, mob, luoghi contengono liste di elementi
associati a tali tipi.

Infine, il blocco SideQuest _{id} definisce pattern per le quest secondarie, le-
gando un personaggio a una serie di possibili percorsi (routes) e connessioni in
uscita:

"SideQuest {id}": {

70

"characterName": "",
"connection out": [...],
"routes": [...]

Dal punto di vista funzionale, Cards. json fornisce allo Step 1 un insieme di ele-
menti concreti (eventi, oggetti, nemici, luoghi, aspetti) che possono essere associati
ai nodi della struttura narrativa permettendo di:

« arricchire i nodi astratti definiti in Story. json con contenuti piu specifici;
« mantenere coerenza tra i tipi di card utilizzati nelle diverse fasi della storia;

o predisporre fin dallo Step 1 il terreno per la generazione di quest e side quest
durante gli step successivi.

5.4.4 Costruzione del prompt

La costruzione del prompt ¢ uno degli elementi piu delicati dello Step 1. L’intero
comportamento del modello generativo dipende dalla chiarezza, dalla struttura e dai
vincoli presenti nelle istruzioni. Il prompt impiegato nello Step 1 e organizzato in
blocchi funzionali, ciascuno con un ruolo specifico nel controllo della generazione:

1. Definizione del ruolo del modello La prima parte del prompt chiarisce al
modello quale compito deve svolgere e quale identita operativa deve assumere. In
questa fase I’Al viene definita come un “architetto narrativo”, responsabile della
costruzione di grafi narrativi coerenti. Questo orientamento funzionale migliora la
qualita delle scelte strutturali che il modello effettua durante la generazione.

2. Disponibilita delle risorse narrative Il prompt incorpora le informazio-
ni estratte dai file Story.json, Characters. json e Cards. json. Queste risorse
definiscono il vocabolario strutturale consentito: tipologie di nodi, archetipi, temi,
ruoli dei personaggi, categorie di card e regole di composizione. In questo modo
I’AI non inventa liberamente nuovi concetti, ma seleziona elementi all’interno di un
inventario definito e controllato, garantendo maggiore coerenza semantica.

3. Regole generali sul formato dell’output Una sezione del prompt specifica
in maniera rigorosa il formato dell’output. Il modello deve restituire un JSON valido,
senza spiegazioni aggiuntive. Sono definite anche le strutture attese dei nodi, le
chiavi obbligatorie e I'uso dei suffissi numerici per distinguere le istanze. Queste
direttive servono a produrre un output formalmente corretto e compatibile con gli
step successivi.

71

4. Vincoli strutturali sulla narrazione Una parte significativa del prompt
riguarda le regole strutturali:

e come generare e connettere i nodi nei tre atti,

e come utilizzare correttamente le relazioni 1-to-1 e I1-to-N,

» come istanziare sidequest, card narrative e archetipi dei personaggi,
e quali nodi possono includere card e quali no.

Queste regole evitano deviazioni indesiderate, garantendo che la struttura generata
rispetti 'architettura prevista dal sistema e sia utilizzabile negli step successivi.

5. Regole semantiche e coerenza narrativa Il prompt contiene istruzioni de-
dicate alla coerenza tematica e stilistica. L’Al viene guidata a operare in un contesto
coerente con il genere, il tono e 'ambientazione forniti dall’'utente, evitando com-
binazioni incompatibili. Sono inoltre richieste descrizioni semantiche per ogni tipo,
tema o allineamento utilizzato, cosi da rafforzare la base logica dei nodi generati.

6. Integrazione degli embedding Una sezione del prompt specifica che il mo-
dello puo fare riferimento a informazioni provenienti da documenti indicizzati tra-
mite embedding. Questo meccanismo permette all’Al di acquisire ulteriori detta-
gli semantici (ad esempio definizioni di archetipi o regole narrative) senza inserire
manualmente lunghi testi nel prompt e migliorandone la coerenza narrativa.

7. Profilo di complessita Infine, il prompt integra i parametri calcolati dal-
la funzione complexity_profile, che ne stabiliscono la complessita generale della
strutura da generare. Questi vincoli permettono al modello di adattare la struttura
alla complessita desiderata dall’utente.

5.4.5 1l ruolo del livello di complessita

Il livello di complessita ¢ un parametro centrale dello Step 1 e viene impostato dal-
I'utente tramite uno slider con valori compresi tra 1 e 100. Questo valore non si
traduce semplicemente in un numero fisso di nodi, ma viene interpretato dalla fun-
zione complexity_profile(slider) come un vero e proprio profilo di complessita
narrativa.

In primo luogo, il valore selezionato viene mappato in tre fasce concettuali (zone):
low, medium e high, corrispondenti rispettivamente a strutture semplici, intermedie
e complesse. All'interno di ciascuna zona, il valore numerico dello slider viene
utilizzato per interpolare una serie di parametri che controllano diversi aspetti della
struttura, tra cui:

72

o il numero massimo di nodi generabili (max_nodes);

e il numero minimo di personaggi principali richiesti (min_characters);

o il numero medio di diramazioni per arco narrativo (branches_per_arc);

o laproporzione tra collegamenti lineari e collegamenti “uno a molti” (one_to_n_ratio);
« la profondita massima di ricorsione delle ramificazioni (recursion_depth);

o il numero di collegamenti tra atti diversi (cross_act_links);

e la percentuale di percorsi opzionali rispetto alla linea principale della storia
(optional_paths_ratio);

o il numero di side quest per personaggio principale (per_major_character).

Dal punto di vista quantitativo, la funzione complexity_profile definisce per
ciascuna zona intervalli distinti:

e per una complessita bassa (zone = "low"), il numero massimo di nodi varia
indicativamente da 3 a 25, con poche ramificazioni per arco, bassa profondita
ricorsiva e un numero contenuto di collegamenti tra atti e percorsi opzionali;
la struttura tende a essere piu lineare e facilmente controllabile;

« per una complessita media (zone = "medium"), il numero massimo di nodi
cresce (circa 26-40), aumentano le diramazioni per arco, la quota di collega-
menti uno-a-molti e il numero di side quest per personaggio; la storia assume
una struttura piu articolata, con maggiore spazio per trame parallele e sviluppo
dei personaggi;

o per una complessita alta (zone = "high"), il sistema puo arrivare a gestire
fino a circa 41-50 nodi, con molte ramificazioni per arco, forte presenza di
percorsi opzionali, collegamenti incrociati tra atti e un numero significativo di
side quest per ciascun personaggio principale; la struttura risultante e ricca,
densa e fortemente interconnessa.

Il risultato della chiamata a complexity_profile e un dizionario che viene sal-
vato e poi iniettato nel prompt dello Step 1. In questo modo il modello Al non riceve
soltanto un generico “livello di complessita”, ma un insieme di vincoli numerici e
proporzionali che ne guidano le scelte durante la generazione della struttura: quante
diramazioni introdurre, quanto rendere opzionali alcuni percorsi, quanto intrecciare
gli atti tra loro e quanto spazio lasciare alle side quest.

73

5.4.6 Struttura a tre atti e tipologie di nodi narrativi

La generazione della struttura narrativa nello Step 1 si basa su un modello a tre
atti (Setup, Confrontation, Resolution). Nel sistema sviluppato, questa suddivisione
non e soltanto una scelta stilistica, ma un vincolo formale imposto al modello Al
per garantire una progressione narrativa coerente. Ogni atto contiene famiglie di
nodi con una funzione narrativa specifica, definite direttamente all’interno del file
Story. json, che funge da blueprint dell’intera struttura.

Nel seguito vengono descritte le tre sezioni principali e le relative famiglie di nodi
cosl come sono modellate in Story. json.

Atto I: Setup

L’atto di Setup introduce il mondo narrativo, stabilisce il tono della storia, pre-
senta i personaggi principali e prepara gli eventi che condurranno al conflitto. In
Story. json, questa fase e articolata in tre famiglie di nodi principali: PreEvents_{id},
FirstLevelSetup_{id} e SecondLevelSetup_{id}.

PreEvents_ {id} I nodi PreEvents_{id} descrivono eventi anteriori all’inizio
della storia, che contribuiscono a definire il passato del protagonista o del mondo di
gioco.

In Story. json questa famiglia ¢ caratterizzata dal campo type con due valori
possibili:

e Backstory

e Prequel

Questi nodi rappresentano dunque la backstory o eventi “prequel” che fungono
da radici della narrazione. Inoltre, PreEvents {id} puo includere un blocco card
con diverse tipologie di card (eventCard, itemCard, mobCard, placeCard), collegate
alle rispettive famiglie in Cards. json. In questo modo, gli eventi pregressi possono
essere arricchiti da oggetti, luoghi o entita rilevanti per la storia.

FirstLevelSetup_ {id} InodiFirstLevelSetup_{id} espandono il setup inizia-
le introducendo motivazioni, obiettivi e prime decisioni del protagonista. Il campo
type elenca una serie di archetipi narrativi di alto livello:

e Call to Adventure
o The Hero Journey

o The Redemption Quest

74

Saving The World

They Fight the Crime
o Status Quo is God

e RetCon

Queste etichette descrivono il tipo di configurazione narrativa che caratterizza
I'ingresso del protagonista nella storia . La connessione in uscita connection_out
e routes definiscono i collegamenti verso SecondLevelSetup_{id}.

SecondLevelSetup_ {id} I nodi SecondLevelSetup_{id} rappresentano confi-
gurazioni tematiche che guidano lo sviluppo iniziale della storia sulla base degli
eventi precedenti. A differenza dei FirstLevelSetup_{id}, qui il campo principale
non €& type ma themes, che contiene:

o Serious Business

e Masquerade

o X Meets Y

o Wangst

o Moral Event Horizon
o Sealed Evil In A Can

o Applied Phlebotinum

Questi temi descrivono il tono e le dinamiche narrative che caratterizzano il
prosieguo dell’atto I. Anche SecondLevelSetup_{id} puo includere un blocco card
che collega eventi, oggetti, nemici e luoghi alle sezioni corrispondenti in Cards. json,
e definisce i collegamenti verso il primo livello di Confrontation.

Atto II: Confrontation

L’atto di Confrontation rappresenta la fase centrale della storia, in cui le tensioni

crescono, il protagonista affronta ostacoli e il conflitto principale si intensifica. In

Story. json, questa sezione ¢ composta da due famiglie di nodi: FirstLevelConfrontation_{id}
e SecondLevelConfrontation {id}.

75

FirstLevelConfrontation_ {id} I nodi FirstLevelConfrontation_{id} costi-
tuiscono il primo livello del conflitto. Qui il campo type prevede i seguenti valori:

o Conflict

o MacGuffin

o Chekhov’s Gun
e Love Triangle

Questi tipi rappresentano configurazioni narrative tipiche della fase centrale: con-
flitti veri e propri, oggetti o obiettivi che muovono la trama (MacGuffin), elementi
introdotti perché avranno un ruolo chiave (Chekhov’s Gun), o dinamiche relazionali
complesse (Love Triangle). Le connessioni e le routes definiscono il collegamento
verso i nodi di secondo livello del Confrontation.

SecondLevelConfrontation_ {id} InodiSecondLevelConfrontation_{id} mo-
dellano i temi che emergono durante il conflitto. Come per SecondLevelSetup_{id},
anche qui il campo principale ¢ themes, con lo stesso insieme di possibili valori:

o Serious Business

e Masquerade

o X Meets Y

o Wangst

o Moral Event Horizon
o Sealed Fvil In A Can
o Applied Phlebotinum

Questi temi vengono collocati nella fase di Confrontation per definire il tono e
le implicazioni morali e simboliche del conflitto. Anche in questo caso & presente
un blocco card che permette di collegare eventi, oggetti, mob e luoghi specifici alle
card di Confrontation in Cards. json, e le routes collegano questa famiglia di nodi
alla prima parte della Resolution.

Atto III: Resolution

L’atto di Resolution conclude la storia, risolve i conflitti principali e definisce lo stato
finale del mondo di gioco e dei personaggi. In Story. json, questa fase ¢ articolata in
quattro famiglie di nodi: FirstLevelResolution {id}, ContinuousClimax_ {id},
SecondLevelResolution {id} e ClimaxEvent {id}.

76

FirstLevelResolution_ {id} I nodi FirstLevelResolution_{id} rappresenta-
no la parte iniziale della risoluzione, comprendendo rivelazioni chiave e momenti di
climax. Il campo type contiene:

o The Reveal

e Climazx

Questi valori identificano rispettivamente il momento della rivelazione (quando
informazioni nascoste vengono finalmente svelate) e il culmine della storia, in cui la
tensione raggiunge il suo apice. Questa famiglia include anche un flag BigDamnHero
(Yes/No), che indica se il protagonista compie un’azione eroica decisiva, e puo
includere card legate alla fase di climax e risoluzione.

ContinuousClimax_ {id} InodiContinuousClimax_{id} rappresentano la con-
tinuazione del climax e la transizione verso la parte finale della risoluzione. Non de-
finiscono tipi o temi aggiuntivi, ma modellano il flusso tra il culmine della storia e gli
esiti conclusivi, tramite campi di connessione in ingresso e in uscita (connection_in,
connection_out) e relative routes.

SecondLevelResolution_ {id} I nodi SecondLevelResolution_{id} descrivo-
no la chiusura vera e propria della storia e la sua valenza tematica finale. Qui il
campo type prevede:

e FEnd

o Aesop

End rappresenta la conclusione degli eventi e la chiusura dei fili narrativi, mentre
Aesop indica una conclusione con esplicita lezione morale. Anche questa famiglia
puo usare un blocco card per collegare eventi, luoghi, oggetti e mob alle card finali
definite in Cards. json.

ClimaxEvent_ {id} I nodi ClimaxEvent_{id} modellano un evento dramma-
tico specifico collegato alla condizione di BigDamnHero. Sono attivati quando il
protagonista compie un’azione eroica decisiva nel contesto del climax. Questi nodi
non definiscono ulteriori tipi, ma fungono da punto focale per rappresentare 1’apice
dell’eroismo del protagonista e le sue conseguenze narrative.

77

Relazioni e regole di collegamento tra nodi

Ogni famiglia di nodi definisce campi connection_in, connection_out e routes
che specificano come i nodi possono essere collegati tra loro. Queste informazioni
vengono utilizzate dal modello per:

« guidare il collegamento logico tra le diverse fasi della storia,
 evitare salti narrativi incoerenti,

e mantenere una progressione tra Setup, Confrontation e Resolution

Ruolo delle tipologie di nodi nella generazione

Durante la generazione della struttura, lo Step 1 seleziona i tipi di nodo sulla ba-
se dell’atto di appartenenza, del profilo di complessita e delle regole definite in
Story. json. A ciascun nodo vengono poi associati:

 elementi di contesto (eventi, luoghi, oggetti, entita) derivati da Cards. json;
« riferimenti a personaggi, archetipi e ruoli definiti in Characters. json;

e connessioni in ingresso e in uscita coerenti con i campi connection_in, connection_ out
e routes.

Il risultato & una struttura narrativa coerente, modulare e semanticamente an-
corata al modello di base, pronta per essere sviluppata in capitoli nello Step 2.

5.4.7 Generazione della struttura narrativa: funzionamen-
to, logica e output

La generazione della struttura narrativa nello Step 1 ¢ il risultato dell’interazione
tra tre componenti principali: il prompt strutturato, i file JSON contenenti la base
di conoscenza narrativa e il modello Al. L’obiettivo di questa fase ¢ generare un
grafo narrativo completo, costituito da un numero definito di nodi distribuiti nei tre
atti e collegati da relazioni logiche. Tale grafo rappresenta l'ossatura della storia e
costituisce I'input principale per le fasi successive della pipeline.

La generazione avviene attraverso una sequenza ordinata di operazioni che com-
binano vincoli strutturali, contenuti semantici e scelte autonome dell’Al. Nel seguito
viene illustrato il funzionamento interno del processo.

78

Selezione dei nodi e livello di complessita

Il processo inizia dal parametro di complessita scelto dall'utente, che determina il
numero totale di nodi da generare. Tipicamente:

o un livello di complessita basso genera pochi nodi, privilegiando linearita e
coerenza;

o un livello medio produce una struttura articolata con piu ramificazioni;

o un livello elevato genera numerosi nodi e percorsi alternativi, aumentando la
profondita narrativa ma anche la possibilita di incoerenze.

Il modello, guidato dal prompt, suddivide automaticamente il totale dei no-
di tra i tre atti, rispettando proporzioni drammaturgiche standard (pit nodi nel
Confrontation, meno nel Resolution). Per ciascun nodo, il modello seleziona:

1. la famiglia di appartenenza (es. PreEvents, FirstLevelConfrontation, Clima-
xEvent);

2. il tipo specifico all’interno della famiglia (es. Backstory);
3. eventuali card associate (eventi, oggetti, luoghi, mob);

4. eventuali riferimenti a personaggi o archetipi.

Questa scelta combina regole del modello (vincoli narrativi) con “ispirazioni”
tratte dai file JSON.

Costruzione del contenuto dei nodi

Una volta determinato il tipo di nodo, il modello genera una breve descrizione che
ne sintetizza la funzione narrativa. La descrizione viene prodotta sulla base di:

e la definizione del tipo in Story. json;
« il contesto tematico e ambientale fornito da Cards. json;
o gli archetipi o ruoli dei personaggi estratti da Characters. json;

o la sintesi descrittiva fornita dall'utente (titolo, pitch narrativo o descrizione
generale).

Il risultato ¢ una rappresentazione ad alto livello di un evento o stato narrativo.
Esempio (semplificato):

79

{

llidll : IINSII

"act": 1

"type": "BackStory",

"description": "I1 protagonista assiste a un evento

misterioso nella Foresta di Lume,
che mette in moto la catena degli eventi principali.",
"cards": ["Event: Prophecy", "Place: Forest"]

3

Generazione delle connessioni tra nodi

Una volta generati i nodi, il modello si occupa di definire le connessioni tra di essi.
Le connessioni rappresentano:

o relazioni ,
o transizioni narrative,
o sviluppi alternativi,

e dipendenze funzionali tra eventi.

Story. json fornisce indicazioni sulle possibili connessioni (connection out) e
percorsi (routes) per ciascuna famiglia di nodi. Il modello utilizza tali indicazioni
per:

1. evitare collegamenti incoerenti (es. un nodo di climax che precede un nodo di
setup);

2. mantenere una progressione corretta tra i tre atti;

3. costruire ramificazioni sensate quando richieste da una complessita elevata.
Esempio di connessione generata:

"connections": [

{ "from": "Story.Prequel", "to": "Story.FirstLevelSetup" },

{ "from": "Story.FirstLevelSetup", "to": "Story.SecondLevelSetup" },

{ "from": "Story.SecondLevelSetup", "to": "Story.FirstLevelConfrontation" }

]

80

Formattazione dell’output

Il risultato finale dello Step 1 ¢ un JSON strutturato contenente:

e lista dei nodi, ciascuno con:

— id univoco,

atto di appartenenza,
— tipo,
— descrizione sintetica,

— card associate.
o lista delle connessioni,

» metadati (complessita scelta, numero dei nodi, timestamp di generazione).

5.5 Implementazione dello Step 2: Generazione
dei capitoli narrativi

Lo Step 2 estende la struttura generata nello Step 1 e la trasforma in una sequenza
di capitoli narrativi organizzati nei tre atti della storia. Mentre nel primo step
i nodi rappresentano elementi astratti del grafo, in questa fase ciascun nodo viene
reinterpretato come un capitolo dotato di obiettivi narrativi, elementi scenici e primi
spunti di gameplay. Il risultato ¢ un JSON strutturato che funge da base per la
generazione della storia testuale nello Step 3.

Dal punto di vista implementativo, lo Step 2 opera combinando tre insiemi di
informazioni:

o la struttura narrativa (nodi e relazioni) prodotta nello Step 1;
« le basi semantiche contenute in Story. json, Characters. json e Cards. json;
o la NAP Policy, che definisce come gli aspetti narrativi si traducano in elementi

ludici (encounters, interazioni, rischi, ostacoli, varianti).

5.5.1 Logica implementativa

La generazione dei capitoli segue un processo ricorrente che, per ciascun nodo della
struttura narrativa, combina analisi strutturale e interpretazione semantica. In pri-
mo luogo il sistema esamina il nodo, identificandone 1'atto di appartenenza, il tipo
o il tema narrativo, le connessioni previste nel grafo e il ruolo drammatico che esso

81

ricopre. Questa lettura permette di collocare il nodo nella progressione della storia
e di definirne la funzione all’interno dell’arco narrativo dell’atto.

Una volta interpretato il nodo sul piano strutturale, il sistema recupera tutto il
contesto semantico necessario alla costruzione del capitolo. Vengono quindi analiz-
zati 1 personaggi coinvolti insieme alle card pertinenti associate al nodo. A questo si
aggiungono le descrizioni semantiche di tipi, temi e altri elementi narrativi definiti
nei file JSON. L’integrazione di queste informazioni consente di mantenere conti-
nuita con la struttura generata nello Step 1, garantendo che ogni capitolo rifletta
coerentemente gli elementi introdotti in precedenza e contribuisca alla progressione
complessiva della storia.

5.5.2 Costruzione del prompt

La costruzione del prompt nello Step 2 ¢ organizzata in modo modulare, analogamen-
te a quanto avviene nello Step 1 € permette di guidare il modello nella generazione
del chapter plan, uno schema di tutti i capitoli della storia, includendo componenti
sia narrative che ludiche.

1. Definizione del ruolo del modello La sezione iniziale stabilisce che I’AI deve
operare come “narrative video game writer”, incaricato di trasformare la struttura
a nodi generata nello Step 1 in una sequenza coerente di capitoli. Il modello deve
quindi progettare capitoli dotati di una chiara funzione narrativa e ludica. Fin da
subito vengono esplicitati i tre elementi obbligatori di ogni capitolo: la narrativa,
gli Encounter Plans e il relativo Chapter Adapt.

2. Accesso alle risorse narrative Il prompt rende disponibili al modello tutti
gli elementi JSON necessari: la struttura narrativa prodotta in precedenza, le de-
finizioni dettagliate di nodi, personaggi e card, e la descrizione iniziale della storia
definita dall’'utente. Questo insieme costituisce il contesto semantico entro il quale
I’Al deve operare.

3. Regole formali per la composizione dei capitoli Viene inoltre ribadita la
divisione obbligatoria della storia nei tre atti classici e la proporzione dei capitoli
assegnata a ciascuna sezione. Altre indicazioni riguardano la necessita di una pro-
gressione logica e cronologica, la continuita tematica e la coerenza tra eventi, che
richiede che ogni capitolo rifletta gli eventi accumulati lungo i nodi precedenti del
grafo narrativo.

4. Trasformazione dei nodi in segmenti narrativi Il prompt chiarisce che
un capitolo non equivale a un singolo nodo. Il modello deve invece ragionare per se-
quenze, fondendo piu nodi quando compongono insieme una fase narrativa coerente

82

o, al contrario, suddividendoli in piu capitoli quando il contenuto ¢ denso o com-
porta sviluppi multipli. Questa sezione definisce anche come gestire rami paralleli:
essi non devono produrre percorsi alternativi, ma diverse sfaccettature di una stessa
linea narrativa che il modello deve integrare in un’unica sequenza.

5. Uso corretto di personaggi, card e sidequest Un’altra parte del prompt
regola l'integrazione degli elementi narrativi. Il protagonista deve essere presente
in ogni capitolo, e i personaggi secondari devono influenzare attivamente gli even-
ti. Le card devono essere incorporate come elementi che modellano gli ambienti, gli
ostacoli e i segnali narrativi. Le sidequest, devono essere collocate con criterio all’in-
terno della progressione dei capitoli, avere un chiaro aggancio alla storia principale
e contribuire in maniera verificabile al suo sviluppo.

6. Costruzione del ChapterAdapt tramite NAP Policy Una delle com-
ponenti piu tecniche del prompt riguarda 1'uso della NAP Policy, che definisce le
caratteristiche di giocabilita del capitolo. Il modello deve analizzare i nodi utilizza-
ti, mapparli alle categorie della policy fornita e generare un unico chapter _adapt che
ne stabilisce ritmo, interattivita, intensita , modalita diegetica e quantita minima e
massima di encounter. Questo meccanismo assicura che ogni capitolo sia calibrato
non solo narrativamente, ma anche in termini di esperienza di gioco.

8. Produzione degli Encounter Plans Gli Encounter Plans rappresentano il
cuore ludico del capitolo. Ogni encounter descrive obiettivi, spazi, ostacoli, segnali di
feedback, percorsi di successo o fallimento e possibili variazioni dello stato narrativo.
Il modello & tenuto a conformarsi ai vincoli del ChapterAdapt.

9. Regole di continuita Per evitare incoerenze nella progressione, il prompt
definisce infine le regole che governano la transizione tra capitoli. Ogni capitolo
deve aprire reagendo in modo naturale alla chiusura del precedente, introducendo
personaggi o informazioni solo quando motivati e rispettando sempre la catena cau-
sa—effetto. Ogni cambiamento di luogo richiede una transizione esplicita e nessun
elemento puo apparire senza essere stato acquisito o introdotto in precedenza.

10. Specifica del formato dell’output Il prompt si conclude imponendo un for-
mato di output rigidamente definito: un singolo oggetto JSON contenente 1’elenco
dei capitoli, ciascuno composto da titolo, nodi utilizzati, encounter plans e chap-
ter adapt. Questa struttura garantisce la validita dell’output e la sua immediata
integrazione nello Step 3.

83

5.5.3 Utilizzo della NAP Policy: Encounter Plan e Chapter
Adapt

All’interno dello Step 2, la generazione dei capitoli non si limita a strutturare la
narrazione: deve trasformare ogni nodo del grafo in un segmento giocabile, dotato
di ritmo, interattivita e obiettivi concreti. Per ottenere questo risultato il sistema
utilizza due elementi complementari, Chapter Adapt ed Encounter Plan, guidati
dalla NAP Policy (Node-Adaptive Playability). Questi tre componenti lavorano
insieme per tradurre la natura narrativa di ogni nodo in una precisa configurazione
di gameplay.

Il ruolo della NAP Policy

La NAP Policy puo essere definita come la grammatica di giocabilita dello Step 2:
definisce quali livelli di interattivita, opposizione, ritmo e quantita di encounter sono
appropriati per ciascun tipo di nodo e per ciascun atto. Essa fornisce al sistema una
mappatura esplicita che collega:

« il tipo del nodo (es. Prequel, Setup, Confrontation, Resolution),
 la fase dell’arco narrativo in cui il nodo si trova,

o e le caratteristiche di giocabilita necessarie (beat profile, whammo, interacti-
vity level, opposition, encounter count).

Questo garantisce coerenza nel ritmo tra capitoli dello stesso atto e variabilita pro-
gressiva man mano che la storia evolve. Di seguito un estratto della NAP Policy
applicata:

84

"nap_version": "1.0",
"beats_profiles": {
"soft3": ["Hook&Goal","Complication","StateDelta+Hook"],
"softb5": ["Hook&Goal","Approach","Complication",
"Push/Tradeoff","StateDelta+Hook"],
"full7": ["Hook&Goal","Approach","Complication","MidGoal+Whammo",
"Reversal","Push/Tradeoff","StateDelta+Hook"]

3,
"acts_caps": {
"I { "max_opposition_intensity": 2, "whammo_severity": "soft-medium" },
"II": { "max_opposition_intensity": 3, "whammo_severity": "medium-hard" },
"III": { "max_opposition_intensity": 3, "whammo_severity": "hard" }
3,
"nodes": {
"PreEvents.Backstory": {
"narrative_scope": "Contextualize the events preceding the
story (not playable or very light)",
"beats_required": "soft3",
"interactivity_level": O,
"whammo_required": false,
"opposition_intensity": O,
"encounters _minmax": [0,1],
"default_diegesis_mode": "narrated_past",
"allowed_diegesis_modes": ["narrated past","present_time"]
3,
"SecondLevelConfrontation": {
"narrative_scope": "Escalation + tough choices",
"beats_required": "full7",
"interactivity_level": 3,
"whammo_required": true,
"opposition_intensity": 3,
"encounters _minmax": [2,3]
s
}

85

Chapter Adapt: policy per giocabilita del capitolo

Una volta determinati i nodi da cui il capitolo deriva, lo Step 2 applica la NAP
Policy per costruire il Chapter Adapt, cioe I'oggetto che definisce i limiti e le regole
entro cui il capitolo deve essere giocato. Il Chapter Adapt stabilisce:

« il beat profile che definisce il ritmo interno del capitolo (soft3, soft5, full7);
o il livello di interattivita previsto;

o lintensita massima dell’opposizione consentita;

« se il capitolo richiede un whammo (twist ludico-narrativo);

e il numero minimo e massimo di encounter da generare;

o il diegesis mode, cioe il modo in cui gli eventi devono essere percepiti (presente,
flashback giocabile, narrato, ecc.);

e lo scope narrativo, che riassume il ruolo funzionale del capitolo.

Il Chapter Adapt e quindi il “contratto” del capitolo: qualunque contenuto ge-
nerato successivamente deve rispettarlo. Se I’Encounter Plan proposto risultas-
se troppo complesso, troppo semplice o in conflitto con questi vincoli, verrebbe
automaticamente corretto.

{
"Chapter 1": {
"Chapter_act": "Act I",
"Chapter_name": "The Fading Echoes of the Past",

"Description": "..."
"chapter_adapt": {
"narrative_scope": "Contextualize the events preceding
the story (not playable or very light)",
"beats_required": "soft3",

"interactivity_level": O,
"whammo_required": false,
"opposition_intensity": O,
"encounters _minmax": [

0,

1
1,

"diegesis_mode": "narrated_past"

86

(altri capitoli)
"Chapter 5": {

"Chapter_act": "Act II",

"Chapter_name": "The First Echo of Conflict",

"chapter_adapt": {
"narrative_scope": "First significant clash",
"beats_required": "full7",
"interactivity_level": 2,
"whammo_required": true,
"opposition_intensity": 2,

"encounters_minmax": [
1,
3
1,
"diegesis_mode": "present_time"

Encounter Plan: gameplay del capitolo

Se il Chapter Adapt rappresenta la regola, ’Encounter Plan rappresenta il contenuto.
Per ogni capitolo, I’Al deve produrre uno o piu encounter, ovvero micro-strutture
di gameplay che definiscono cio che il protagonista fa, vede e affronta momento per
momento. Ogni Encounter Plan include:

obiettivi chiari e verificabili (goals);

gli spazi o le configurazioni topologiche in cui ha luogo ’azione;

la tipologia di opposizione o pressione (mobs, trappole, distorsioni);

o un eventuale whammo, se richiesto dal Chapter Adapt;

 istate deltas, cioe gli effetti permanenti sullo stato della storia o dei personaggi.

Gli encounter sono elementi base di gameplay che lo Step 3 espandera in prosa
giocabile. Lo Step 2 non scrive ancora il testo narrativo: genera solo la struttura
funzionale dei momenti giocati. Di seguito un esempio di encounter plan

{
"Chapter 5": {
"Chapter_act": "Act II",
"Chapter_name": "The First Echo of Conflict",

87

"encounter_plans": [

{
"goals": [
"Defend against the shadowy forces attempting
to control Kaelen’s cursed form",
"Utilize the Invisible Mirror to deflect or reveal attacks",
"Escape the immediate conflict zone before succumbing to the curse"
1,
"core verbs": [
"defend",
"utilize",
"escape"
1,
"whammo": "A powerful surge of the curse temporarily
grants Kaelen immense, uncontrolled power, THEREFORE he must
choose between risking innocent lives or suppressing
it at great personal cost.",
"candidate_spaces": [
"Collapsing Alleyways, Whispering Nexus"
1,
"opposition": [
{
"mob": "Shadow Weavers",
"pattern": "corruption/control",
"hint": "Attempts to amplify Kaelen’s curse,
vulnerable to reflected energy"
+
1,
"state_deltas": [
"Kaelen curse_intensified",
"Shadow_Weavers_repelled",
"Kaelen_moral dilemma_introduced"
]
b

1,

Relazione tra NAP, Chapter Adapt e Encounter Plan

L’intero processo segue una catena ben definita:

e Nodo narrativo — Regola NAP: Il sistema identifica a quale regola della NAP
il nodo corrisponde e ne eredita i vincoli (ritmo, interattivita, whammo, ecc.).

88

e Nodo + NAP — Chapter Adapt: Se un capitolo deriva da piu nodi, le regole
vengono aggregate secondo gli aggregation rules della NAP (massimi, minimi,
merging, clamping per atto).

o Chapter Adapt — Encounter Plan: Gli encounter vengono generati o corretti
in modo da rispettare il numero minimo/massimo previsto, includere o meno
il whammo secondo policy, non superare il livello di opposizione ammesso e
coprire il beat profile richiesto.

o Encounter Plan — base gameplay per Step 3: Step 3 convertira encounter e
chapter adapt in prosa interattiva, ma senza modificarne la struttura logica.

L’uso combinato di NAP + Chapter Adapt + Encounter Plan permette allo
Step 2 di essere un sistema di progettazione narrativa per videogiochi, in cui ogni
segmento della storia e calibrato per essere sia coerente con la trama sia adatto alla
trasformazione in gameplay.

5.6 Implementazione dello Step 3: Generazione
della storia dettagliata

Lo Step 3 costituisce la fase in cui la narrazione assume piena forma: partendo
dalla struttura generata nello Step 1 e dal piano dei capitoli prodotto nello Step 2,
il sistema elabora la versione estesa della storia, trasformando ogni capitolo in una
sequenza coerente di scene, azioni, dialoghi e stati narrativi. A differenza delle
fasi precedenti, prevalentemente strutturali, questo step opera a livello testuale e
semantico, traducendo ogni chapter plan in prosa narrativa giocabile.

5.6.1 Logica implementativa

L’implementazione dello Step 3 € basata su un processo fortemente incrementale.
La generazione non avviene in blocco, ma capitolo dopo capitolo: per ogni sezione
della storia, il modello riceve il contesto completo prodotto fino a quel momento,
cosl da garantire continuita tematica, coerenza nei personaggi, stabilita del tono e
progressione naturale dei conflitti. Ogni iterazione di generazione utilizza un prompt
dedicato che integra:

« lintera struttura narrativa dello Step 1 (tipi di nodi, relazioni, ruoli dramma-
tici);

o il capitolo corrente come definito dallo Step 2 (Description, ChapterAdapt,
EncounterPlans);

« la storia completa prodotta nei capitoli precedenti;

89

o la lista dei capitoli ancora da sviluppare (per mantenere coerenza prospettica);

« i dati semantici provenienti da Story. json, Characters. json e Cards. json.

Lo Step 3 traduce i vincoli strutturali e ludici degli Encounter Plan in scene
concrete, facendo emergere azioni verificabili, motivazioni, ostacoli, progressioni di
stato e segnali di transizione tra capitoli integrando allo stesso tempo la struttura
narrativa definita nello step 1. Dopo la generazione, ogni output viene validato,
convertito in JSON e integrato nella storia globale, diventando parte del contesto
per la generazione del capitolo successivo.

Generazione incrementale della storia

L’intero flusso di generazione si basa su un ciclo iterativo che consente al modello di
operare in modo informato e progressivo. Per ogni capitolo:

1. il sistema prepara il contesto includendo storia generata finora, struttura
narrativa complessiva e definizioni semantiche;

2. costruisce un prompt che combina i vincoli ludico-narrativi dello Step 2 con
gli elementi strutturati dallo Step 1;

3. invia al modello solo il capitolo corrente da espandere, ma corredato dal con-
testo necessario per mantenere coerenza (capitoli precedentemente generati e
lista di capitoli da generare usati come contesto);

4. integra l'output validato nella storia complessiva, aggiornando lo stato narra-
tivo globale.

Questo approccio incrementale permette al modello di “ricordare” cio che ¢ gia
accaduto e di generare coerentemente il capitolo corrente. La generazione procede
quindi mantenendo una continuita naturale tra causa ed effetto, in cui ogni even-
to deriva logicamente dai precedenti; assicura inoltre una coerenza psicologica e
comportamentale nei personaggi, evitando cambiamenti improvvisi o non motiva-
ti. Allo stesso tempo, il sistema rispetta i vincoli ludici definiti dal ChapterAdapt,
che influiscono sul ritmo, sull’interattivita e sull’intensita degli ostacoli, e garantisce
transizioni fluide da un capitolo al successivo, senza salti logici o cambi improvvisi
di ambientazione.

5.6.2 Costruzione del prompt

Il prompt dello Step 3 e progettato per trasformare la pianificazione astratta dei
capitoli in una narrazione giocabile, mantenendo al tempo stesso un allineamento
stretto con la struttura complessiva della storia e con i vincoli ludici definiti negli
Step 1 e 2. A differenza dei prompt precedenti, qui il modello deve generare testo
narrativo e un set coerente di encounters per il singolo capitolo corrente.

90

1. Ruolo del modello La sezione introduttiva del prompt definisce chiaramente
Iidentita operativa del modello come narrative video game writer Al e gli assegna
due compiti distinti ma strettamente collegati: da un lato produrre la prosa nar-
rativa dettagliata e giocabile del capitolo; dall’altro generare un insieme completo
di encounters che coprano cio che accade in quel capitolo a livello di gameplay. Il
modello ¢ istruito a trattare gli encounter plans come basi di gameplay da espandere.

2. Risorse contestuali e uso congiunto delle strutture Come negli step
precedenti, il prompt fornisce al modello un insieme articolato di risorse JSON, ma
in questo caso 'enfasi e sul loro uso combinato:

o la narrative seed phrase, descrizione data in input dall’utente, che ancora il
capitolo al tema di fondo della storia;

o le definizioni di base della storia, personaggi e carte, usate per interpretare
tipi, temi, archetipi, allineamenti e elementi di worldbuilding;

o la full narrative story structure, cioe il grafo completo generato nello Step 1,
con nodi, collegamenti e logica di ramificazione;

o il current chapter (attuale capitolo da espandere), contenente titolo, nodi
utilizzati, breve descrizione, encounter plans e chapter adapt;

e 1iprevious chapters (capitoli precedentemente espansi), che fungono da contesto
per gli eventi gia accaduti;

o i future chapters (capitoli non espansi), che servono per assicurare coerenza
direzionale.

Il prompt dichiara in modo esplicito che tutte queste fonti devono essere utilizzate
insieme.

3. Regole sulla struttura narrativa e integrazione nella storia a tre atti
I1 prompt richiama la suddivisione della storia nei tre atti (Setup, Confrontation,
Resolution) e le regole gia definite per i nodi di ciascun atto. Questa parte ricorda
al modello che il capitolo corrente deve:

1. rispettare il ruolo dei nodi coinvolti (ad esempio, Setup come introduzione,
Confrontation come escalation, Resolution come chiusura);

2. mantenere la chain of influence, cioe costruire gli eventi del capitolo sulla base
di tutti i nodi precedenti nella catena, non solo sull’ultimo;

3. integrare in modo naturale le carte narrative (luoghi, oggetti, mob, eventi)
collegate alla sezione attuale della storia.

91

4. Continuita capitolo per capitolo e gestione del flusso Una parte corposa
del prompt e dedicata alla chapters continuity. Qui vengono specificati i vincoli che
regolano il passaggio tra capitoli: ogni nuovo capitolo deve “consumare” la chiusura
del capitolo precedente, mostrando le conseguenze immediate dell’ultimo evento. Il
modello e guidato a:

 evitare salti temporali o informativi non giustificati,
e introdurre nuovi personaggi solo in modo motivato,
 giustificare ogni cambio di luogo con una transizione,

o rispettare il principio di acquisition-before-use: un oggetto, una conoscenza o
un alleato possono essere utilizzati solo se introdotti in capitoli precedenti o
acquisiti nel capitolo corrente.

Il prompt introduce inoltre la nozione di Carry-In Ledger: tutti gli elementi narrativi
gia comparsi (chiavi, ferite, relazioni, condizioni del mondo) devono essere ripresi,
consumati o evoluti, evitando oggetti o eventi “dimenticati” e situazioni ridondanti.

5. Uso di ChapterAdapt e Encounter Plans Un blocco centrale del prompt
¢ dedicato al rapporto tra chapter adapt e encounter plans. 11 ChapterAdapt,
calcolato in Step 2 a partire dalla NAP Policy, definisce:

« il profilo di beat richiesti (soft3, soft5, full7),

o la presenza o meno del whammo (il colpo di scena di meta capitolo),
« il livello di interattivita e I'intensita dell’opposizione,

e il numero minimo e massimo di encounter consentiti,

« la diegesis_mode (passato narrato, flashback giocabile, presente).

6. Struttura degli encounters e allineamento con la prosa Il prompt defi-
nisce in modo dettagliato la struttura JSON attesa per ciascun encounter (id, obiet-
tivo, spazio, opposizioni, regole, feedback, condizioni di successo/fallimento, sta-
te_delta, eventuale whammo, beat coperti, durata stimata). Viene anche specificato
il vincolo di lockstep tra narrazione e encounters:

e ogni conseguenza rilevante mostrata nella prosa deve apparire in almeno uno
state_delta di encounter;

» ogni goal, spazio o opposizione definito negli encounters deve essere reso visibile
nella narrazione, evitando che gli encounters sembrino disallineati rispetto al
testo del capitolo.

92

8. Formato di output e integrazione nella pipeline Infine, il prompt speci-
fica in modo rigoroso il formato di output: un singolo oggetto JSON che contiene
identificativo del capitolo, atto, nodi utilizzati, titolo, testo narrativo e lista degli
encounters.

5.6.3 Beat narrativi e ruolo degli encounter

Nel modello implementato, ogni capitolo non & soltanto un blocco di testo, ma una
sequenza ritmica di momenti chiave (beats) che ne determinano il passo, la tensione
e la giocabilita. Questi beat rappresentano le micro—unita che scandiscono ’anda-
mento del capitolo: dall’apertura con un obiettivo chiaro, al primo avanzamento
nello spazio di gioco, fino agli ostacoli, al colpo di scena e alla chiusura con una
conseguenza leggibile. Il sistema adotta un set canonico di sette beat:

o HookéGoal,

o Approach,

o Complication,

o MidGoal+ Whammo,
e Rewversal,

o Push/Tradeoff,

o StateDelta+Hook

I beats vengono combinati in tre profili di complessita (soft3, softb, full7). La
NAP Policy associa a ciascun tipo di nodo (PreEvents, Setup, Confrontation, Re-
solution) un profilo di beat e un livello di interattivita, intensita dell’opposizione e
numero di encounter attesi; nello Step 2 questi parametri vengono aggregati, gene-
rando per ogni capitolo un oggetto chapter_adapt con il campo beats_required.
Lo Step 3 utilizza tale informazione per strutturare sia la prosa sia gli encoun-
ter effettivi: il capitolo deve coprire esattamente i beat richiesti dal profilo, senza
introdurne di ulteriori.

Ogni encounter plan viene espanso in un encounter completo e in una sezione
corrispondente di prosa: i beat richiesti vengono distribuiti tra gli encounter del
capitolo (tramite il campo beats_covered) in modo che I'unione degli stessi copra
esattamente il profilo definito da beats_required. In pratica, i beat forniscono la
griglia temporale su cui vengono “agganciati” gli encounter: un encounter puo aprirsi
con Hook&Goal e Approach, un altro puo sviluppare Complication e Push/Tradeoff,
mentre il beat finale StateDelta+Hook garantisce che il capitolo si chiuda con una
trasformazione di stato chiara e un gancio verso il capitolo successivo.

93

Gli encounter generati nello Step 3 hanno quindi una duplice funzione. Da un
lato, costituiscono la specifica ludica del capitolo: ogni encounter ¢ descritto da un
identificatore, un obiettivo testabile, uno spazio diegetico (con eventuale topologia
e interazioni), un set di verbi d’azione, un modello di opposizione (mob, trappole,
pressioni ambientali), regole locali, segnali di feedback, condizioni di fallimento e
successo, modifiche allo stato del mondo o dei personaggi, possibili ricompense ed
eventuale whammo. Dall’altro lato, questi encounter fungono da vincolo per la prosa:
quanto viene descritto nel testo del capitolo deve riflettere le azioni, gli spazi, i rischi
e le conseguenze codificati negli encounter. In questo modo il sistema mantiene un
allineamento stretto tra livello narrativo e livello ludico. Di seguito un esempio di
encounters:

"encounters": [
{
"encounter_id": "CHO4-E1",
"source_seed_index": O,
"goal": "Investigate the source of Kaelen’s cursed transformation,
locate the Invisible Mirror to understand its connection to the time loops,
and evade the disguised agents of Chronos monitoring Kaelen’s movements.",

"space": {
"type": "Alchemist’s Hidden Study",
"topology": "cluttered workbench, bookshelves, archways",

"interactive": [
"arcane lights",
"scrolls and ancient texts",
"cluttered workbench"

},
"verbs": [
"investigate",
"locate",
"evade",
"perceive",
"channel"
1,
"opposition": [
{
"type": "Wizard",
"pattern": "disguised patrol/surveillance",
"ai_hint": "Uses illusion magic, avoids direct confrontation,
observes from shadows."

94

1,
"rules": [
"The Invisible Mirror is initially hidden by illusion magic,
requiring temporal perception to reveal.",
"Disguised agents of Chronos become visible when Kaelen’s
cursed transformation flares or is channeled."
1,
"feedback": [
"A low hum emanates from the distortion, growing stronger
as Kaelen nears the Invisible Mirror.",
"Kaelen’s skin prickles and his cursed transformation flares,
indicating the presence of Chronos’s agents.",
"The disguised agent’s illusion shimmers and
breaks when hit by channeled cursed energy."
1,
"fail states": [
"Kaelen fails to fully reveal the Invisible Mirror,
gaining only fragmented insights.",
"Kaelen is detected by the disguised agent,
increasing Chronos’s awareness of his actions."
1,
"success conditions": [
"Kaelen fully reveals the Invisible Mirror.",
"Kaelen understands the true connection between
his transformation and Chronos’s manipulations.",
"Kaelen successfully evades or disables the disguised agent."
1,
"state_delta": [
"Kaelen_transformation_progress_known",
"Invisible Mirror_activated",
"Chronos_presence_confirmed",
"Chronos_agents_visibility_increased"
1,
"reward": [],
"whammo": "The Invisible Mirror reveals not Kaelen’s
reflection, but a distorted image of Chronos manipulating
the cursed clock, THEREFORE Kaelen realizes the architect
of his suffering is closer than he thought.",
"therefore_or_but": "BUT: The Invisible Mirror reveals
a terrifying truth: Chronos is not a distant threat but
the direct architect of Kaelen’s cursed transformation,
forcing Kaelen into a direct confrontation with a disguised agent.",

95

"estimated minutes": 10,

"beats_covered": [
"Hook&Goal",
"Approach",
"Complication",
"MidGoal+Whammo",
"Reversal",
"Push/Tradeoff",
"StateDelta+Hook"

},

5.7 Implementazione dello Step 4: validazione e
correzione automatica

5.7.1 Logica implementativa

Lo Step 4 ¢ I'ultima fase della pipeline ed ha il compito di verificare, correggere e
convalidare la storia generata negli step precedenti. A differenza delle fasi di gene-
razione, che sono orientate alla produzione di nuovi contenuti narrativi, lo Step 4
¢ interamente dedicato al controllo di qualita. Il suo obiettivo e ridurre il piu pos-
sibile incoerenze, rotture di continuita e problemi nell'uso degli elementi narrativi
(personaggi, oggetti, luoghi, eventi), intervenendo sui testi gia prodotti.

Operativamente, lo Step 4 lavora sulla storia generata dallo Step 3, capitolo per
capitolo, e applica due tipi distinti di validazione:

e una validazione di tipo “label-based”, che controlla 'uso coerente di perso-
naggi, item, mob, luoghi, temi, etichette e termini narrativi;

e una validazione di tipo “flow—based”, che verifica la coerenza del flusso
narrativo, delle transizioni tra capitoli, della cronologia e dei collegamenti
causa—effetto

Entrambi i moduli seguono uno schema simile: per ogni capitolo analizzano
il testo dell’intera storia, individuano problemi significativi, producono un report
strutturato in JSON e, quando necessario, generano patch narrative che vengono
applicate automaticamente al testo. Il risultato e una versione “corretta” della
storia, accompagnata da file di report che documentano gli interventi effettuati.

5.7.2 Label Validator

step4_label _validator.py ¢ il modulo incaricato di controllare la coerenza se-
mantica interna di ciascun capitolo. Il suo scopo principale e verificare che gli

96

elementi narrativi siano utilizzati in modo coerente rispetto a quanto stabilito negli
step precedenti lungo il corso della storia.

A livello logico, il Label Validator riceve in input lintera storia (in formato
JSON). Per ogni capitolo:

1.

2.

6.

estrae il testo del capitolo corrente e il contesto globale della storia;

costruisce un prompt di validazione che include la storia completa, il capitolo
da esaminare e un elenco di regole narrative da rispettare;

. invoca il modello AI con un template che richiede un’analisi strutturata e un

output rigorosamente in formato JSON;

. interpreta il risultato, salvando un report degli eventuali problemi rilevati;

. se il capitolo € marcato come “needs_ fixes”, costruisce un secondo prompt che

chiede al modello di proporre patch concrete da applicare al testo;

applica le correzioni suggerite, aggiornando il JSON della storia.

Il prompt di validazione e progettato per far lavorare il modello su un capitolo
alla volta ma con la possibilita di consultare I'intera storia per evitare contraddizioni.
Tra le linee guida incluse nel prompt vi sono, ad esempio: evitare che compaiano
personaggi non introdotti, impedire 1'uso di etichette meta—narrative (“itemCard”,
“mobCard”, nomi di categorie interne) nel testo , assicurarsi che oggetti o elementi
introdotti in un capitolo abbiano un effetto o una conseguenza nei capitoli seguenti,
controllare che i ruoli dei personaggi non cambino senza motivazione narrativa.

L’output del modello per la fase di validazione segue uno schema JSON del tipo:

"chapter_analysis": {
"chapter_number": "3",
"chapter_title": "...",

"status": "pass" | "needs_fixes",
"label issues": [

{

"issue": "...",

"evidence": "...",

"suggested_fix": "..."

b

97

Se lo stato e “pass”, il capitolo viene considerato valido e il sistema passa al
capitolo successivo. Se & “needs_fixes”, il Label Validator costruisce un secondo
prompt, che contiene il capitolo, il report dei problemi e istruzioni per generare un
nuovo testo corretto. Il modello restituisce un JSON con le patch da applicare, che
il modulo inserisce nel capitolo aggiornando il file della storia. In questo modo,
lo Step 4 introduce un primo livello di pulizia semantica, riducendo la presenza di
etichette improprie o riferimenti incoerenti.

5.7.3 Flow Validator

step4_flow_validator.py affronta un problema complementare: la coerenza del
flusso narrativo. 11 Flow Validator valuta se il capitolo si inserisce correttamente
nella linea temporale della storia e nella progressione complessiva. Anche in questo
caso, I'input e costituito dalla storia completa e dal capitolo corrente. I1 modulo:

o costruisce un prompt che fornisce al modello I'intera storia come contesto e il
capitolo da analizzare come focus;

e chiede una valutazione sulla coerenza rispetto ai capitoli precedenti e suc-
cessivi, sulle relazioni causa—effetto, sulla continuita delle informazioni e sul
rispetto della cronologia;

e richiede un output JSON contenente un giudizio complessivo e, in caso di
problemi, una lista di “major issues” e relative proposte di correzione;

se il capitolo € marcato come “needs_fixes”, costruisce un secondo prompt che
chiede al modello di generare frammenti narrativi integrativi (frasi, brevi paragrafi,
transizioni) da inserire in punti specifici del capitolo e poi applica automaticamente
le modifiche suggerite, aggiornando il testo del capitolo. Il template del prompt di
validazione per il flusso narrativo contiene sezioni dedicate a:

 apertura del capitolo (verifica del “bridge” con il capitolo precedente);
o sviluppo centrale (continuita di obiettivi, conflitti, informazioni);
o chiusura (preparazione del capitolo successivo);

« identificazione di salti temporali non motivati, riaperture di conflitti gia chiusi,
riutilizzo di eventi senza escalation, decisioni non basate su eventi precedenti.

L’output JSON del Flow Validator ¢ organizzato in modo simile a quello del
Label Validator, ma con campi specifici per il flusso logico:

98

"chapter_analysis": {

"chapter_number": "3",
"chapter_title": "...",

"status": "pass" | "needs_fixes",
"coherence": "...",
"logical_thread": "...",

"major_narrative_issues": [
n n

1,
"fixes todo": [
{
"issue": "...",
"evidence": "...",
"where to_insert": "...",
"patch_to_apply": "..."
}
]
}

3

Le patch suggerite dal modello vengono poi applicate al testo del capitolo nelle posi-
zioni indicate (apertura, meta, chiusura, dopo un paragrafo specifico), ricostruendo
una versione del capitolo che rispetta meglio la progressione narrativa complessiva.

5.7.4 File di report e risultato finale

L’esecuzione congiunta di Label Validator e Flow Validator produce una serie di file
di output che documentano lo stato della storia e gli interventi effettuati. Dal punto
di vista funzionale, lo Step 4 non garantisce una perfezione assoluta, i limiti dei
modelli generativi restano presenti, ma introduce un livello di controllo aggiuntivo
che migliora in modo significativo la leggibilita e la stabilita della storia finale.

5.8 Implementazione dello step 5: Generazione
sintesi

Una volta completata la generazione della storia (Step 3), il sistema mette a dispo-

sizione una funzionalita di sintesi accessibile dal Pannello Stories: I'utente seleziona
una storia gia prodotta e avvia la generazione automatica del summary. L’obiettivo

99

e ricostruire e organizzare in modo analitico cio che ¢ gia presente nel testo fina-
le, trasformandolo in una rappresentazione compatta e strutturata, utile sia per la
lettura rapida sia per attivita come revisione, pitch, game design.

5.8.1 Logica implementativa e funzionamento

La generazione della sintesi opera nella fase di post-processing della storia completa.
A differenza degli step precedenti, in cui I’Al costruisce contenuto nuovo rispettando
vincoli strutturali e di playability, qui il modello assume un ruolo di analista: riceve
in input esclusivamente la storia finale e produce una descrizione gerarchica che ne
evidenzia arco narrativo, atti, temi e implicazioni ludiche.

A livello operativo, il flusso e lineare: il sistema recupera la storia selezionata
(testo e metadati eventualmente presenti), la inserisce in un prompt dedicato e
invoca il modello generativo richiedendo un output in JSON. L’attenzione principale
¢ posta su due aspetti: (i) fedelta assoluta al testo sorgente, e (ii) completezza, cioe
la capacita di non omettere snodi rilevanti (eventi, rivelazioni, climax, chiusura). I
risultato & pensato come una “mappa’” della storia.

5.8.2 Costruzione del prompt

Nella parte iniziale il modello viene istruito ad analizzare la storia fornita e a produr-
re un riassunto seguendo esattamente una struttura prefissata, organizzata in cinque
macro-sezioni: una sintesi completa dell’intera trama, una ricostruzione in tre atti
con riferimento ai capitoli, 'identificazione dei temi principali, la ricostruzione del-
la struttura videoludica implicita e, infine, un’analisi degli elementi di gameplay e
design derivabili da storia ed encounter.

Un elemento chiave ¢ la presenza di vincoli espliciti: il modello viene vincolato
a non inventare nulla e a considerare la storia come unica fonte di verita. Inoltre,
la richiesta di mantenere un tono professionale da narrative analysis + game design
orienta I'output verso una forma descrittiva e tecnica, piu adatta a documentazione
e progettazione. Infine, il prompt impone che 'intero risultato sia restituito come file
JSON); cosi da renderlo direttamente utilizzabile a livello applicativo (visualizzazione
nel pannello, esportazione o versionamento).

5.8.3 Descrizione output

L’output della generazione della sintesi consiste in un singolo oggetto JSON struttu-
rato, che riflette fedelmente ’organizzazione richiesta dal prompt e separa in modo
netto i diversi livelli di analisi narrativa e ludica. Ogni sezione svolge una fun-
zione specifica e puo essere utilizzata indipendentemente dalle altre, sia a fini di
consultazione sia come supporto al game design.

100

1. Full Story Summary La prima sezione fornisce una sintesi completa ed esau-
stiva dell’intera storia. In questa parte vengono condensati i personaggi principali,
i loro obiettivi, i conflitti centrali, gli antagonisti, gli eventi chiave, le rivelazioni,
il climax e l’epilogo. L’obiettivo ¢ offrire una visione d’insieme che permetta di
comprendere 'intero arco narrativo senza dover leggere il testo completo.

"full_story_summary": {
"overview": "Kael, a temporal thief trapped in
a looping reality, attempts to steal the Godseed
while confronting the Temporal Warden Xylar...",
"main_characters": ["Kael", "Jara", "Rix", "Xylar"],
"ending": "The loop is broken, the world is saved,
but Kael loses his memories."

2. Three-Act Summary with Chapters La seconda sezione riorganizza la nar-
razione secondo la struttura in tre atti. Ogni atto contiene un riassunto complessivo
e un elenco dei capitoli che lo compongono, identificati tramite i titoli effettivamente
presenti nella storia. Questo consente di mantenere un collegamento diretto con la
suddivisione a capitoli prodotta negli step precedenti.

"three_act_summary": {

"act_I": {
"summary": "The world and the temporal conflict are introduced...",
"chapters": [
{

"title": "The Cursed Clock’s Echoes",
"summary": "Kael relives a fragmented memory tied to a
forbidden prophecy."

3. Main Themes of the Story La terza sezione identifica e descrive i temi
portanti della storia, come dilemmi morali, trasformazioni identitarie o concetti me-
tafisici. Ogni tema ¢ esplicitamente collegato agli eventi narrativi che lo supportano,
evitando interpretazioni arbitrarie.

"main_themes": [

{

"theme": "Sacrifice and Identity",

101

"description": "The protagonist saves the world at the
cost of his own memories."

1,
{
"theme": "Determinism vs Free Will",
"description": "The temporal loop challenges the characters’
ability to change fate."
}

4. General Videogame Structure La quarta sezione traduce la narrazione
in una struttura videoludica ad alto livello. Vengono estratti il flusso del gioco,
la suddivisione in atti e capitoli, il pacing e il ruolo dei personaggi in termini di
gameplay.

"videogame_structure": {

"acts": 3,

"chapter_based_progression": true,

"core_pacing": ["exploration", "stealth", "combat"],
"side_quests": "Integrated within the main acts"

}

5. Gameplay & Design Elements L’ultima sezione analizza in dettaglio tutti
gli elementi di gameplay derivabili dalla storia e dagli encounter. La struttura e
suddivisa in sottosezioni dedicate, come core gameplay loop, combattimento, stati
mentali, boss fight e scelte del giocatore.

"gameplay_design_elements": {
"core_gameplay_loop": "Infiltrate, manipulate time,
adapt to loop consequences",
"boss_fights": [

{
"name": "Xylar, the Temporal Warden",
"narrative_role": "Guardian of causality",
"mechanics": "Temporal distortions and phase-based combat"
+
1,
"fail states": ["Time expiration", "Mental collapse"]

102

5.9 Implementazione UI/UX Unreal Engine

Il front-end dell’applicativo e stato progettato e implementato utilizzando Unreal
Engine come ambiente di sviluppo principale, con l'obiettivo di fornire un’interfac-
cia avanzata per la gestione dell’intero processo di generazione narrativa basato su
intelligenza artificiale. A differenza di un’interfaccia web o desktop tradizionale, il
sistema e stato concepito come un ambiente editoriale interattivo, capace di avvia-
re la generazione delle storie, supportarne 'analisi, la validazione e 1’esplorazione
strutturale.

La scelta di Unreal Engine ¢ motivata dalla necessita di gestire interfacce com-
plesse, strutture dati gerarchiche e flussi di lavoro articolati, tipici della progettazione
narrativa videoludica. L’intero front-end e stato sviluppato come plugin editor-only,
evitando qualsiasi dipendenza dal runtime di gioco e garantendo un’integrazione
nativa all’interno dell’editor.

103

UnrealEngine UI (Frontend)

Story Generator Panel Story Viewer Panel

Step selected
Log
Response

Story Generate
Viewer Summary

Complexity Y

Generate Button

o

Stories
Storage
e | (s e S = S e s o o oy e S e s e |

If Structure Step If Chapters Step If sz Step If Validate Step
Step 5
Step 1 Step 2 Step 3 Step 4 summary
Structure Chapters Story Validation

(((
v v v

[POST API /step1] [POST API /step2] [POST API /step3] [POST API /step4] [POST API /step5 J

VaRest API Layer

Server Python (Backend)

Figura 14: UI/UX architecture

104

5.9.1 Struttura generale del front-end

L’interfaccia e stata progettata seguendo un approccio modulare, separando chiara-
mente:

la logica di gestione (gestione degli step, chiamate al server, stati del siste-
ma);

la presentazione grafica (widget, layout, interazioni);

le funzionalita di supporto (lettura/scrittura file, parsing JSON).

Per raggiungere questo obiettivo sono stati utilizzati diversi strumenti messi a
disposizione da Unreal Engine:

Editor Utility Widgets (EUW), per creare finestre personalizzate utiliz-
zabili direttamente all’interno dell’editor;

Widget Blueprint (WBP), per definire componenti Ul riutilizzabili;

classi C++, per estendere le funzionalita native di Unreal e colmare alcune
limitazioni dei Blueprint;

un plugin editor-only, che incapsula I'intero front-end rendendolo portabile
e facilmente distribuibile.

5.9.2 Editor Utility Widget principale

Il cuore del front-end e rappresentato da un Editor Utility Widget principale,
che funge da punto di accesso a tutte le funzionalita del tool. Questo widget e stato
progettato come una finestra persistente dell’editor e viene aperto tramite una voce
dedicata nel menu di Unreal.

Dal punto di vista implementativo, I’Editor Utility Widget svolge principalmente
il ruolo di controller:

raccoglie gli input dell’utente;
gestisce lo stato globale dell’applicazione;
coordina i vari widget secondari;

invia richieste HTTP al backend per avviare o monitorare gli step di genera-
zione.

105

5.9.3 Interfaccia di generazione della storia

All’interno dell’interfaccia principale & presente una sezione dedicata alla configura-
zione della generazione narrativa. Questa sezione ¢ stata costruita interamente
tramite Widget Blueprint, come mettono a disposizione diversi input per I'uten-
te. L’utente puo inserire una descrizione testuale che rappresenta l’idea narrativa
iniziale. Questo input viene utilizzato come seed narrativo, ovvero come punto di
partenza semantico per la generazione della struttura della storia.

Accanto al seed narrativo, I'utente puo selezionare un valore di complessita, che
influisce direttamente sulla profondita e sul livello di dettaglio della storia gene-
rata. Dal punto di vista implementativo, questo parametro viene semplicemente
raccolto dall’interfaccia e inviato al backend, dove viene utilizzato per modulare il
comportamento del modello di intelligenza artificiale.

E inoltre possibile selezionare lo step di generazione, scegliendo se generare so-
lamente la struttura, capitoli, la storia o includere anche la fase di validazione. Di
seguito nel dettaglio i vari input:

e nome storia;

o descrizione storia (seed narrativo);

e menu a tendina per la scelta dello step di generazione;
« slider per livello di complessita.

Dal punto di vista logico, i Blueprint raccolgono i parametri selezionati dall’u-
tente per poi costruire la richiesta HT'TP strutturata ed inviarla al backend. 1l
Frontend avvia un sistema di pooling per verificare lo stato di avanzamento delle
richieste (job lato backend):

La comunicazione tra il front-end e il backend avviene tramite richieste HTTP
asincrone. Quando 1'utente avvia un processo di generazione, il sistema invia una
richiesta iniziale che restituisce un identificativo univoco del job. A partire da questo
momento, il front-end entra in una fase di monitoraggio, interrogando periodicamen-
te il backend per verificarne lo stato di avanzamento.

Questo meccanismo e stato progettato per gestire processi potenzialmente molto
lunghi, evitando il blocco dell’interfaccia e fornendo all'utente un feedback continuo
(onde evitare timeout). Particolare attenzione ¢ stata dedicata alla gestione del ciclo
di vita del widget, in modo da interrompere correttamente il polling e notificare il
backend in caso di chiusura dell’interfaccia.

106

EUW Story Gen Al X

Storyteller Gen Al

STORY DESCRIPTION SECTION

STORY STEPS SECTION
Generate Story

Average time to complete 20 minutes.

COMPLEXITY LEVEL
® 50 Generate

Structure Chapters Story Validation

[Logs Console]

Figura 15: Story Gen Ul

5.9.4 Pannello Stories

Il pannello Stories rappresenta l’area dell’interfaccia dedicata all’esplorazione dei
risultati generati. In questo pannello vengono visualizzate tutte le storie prodotte
dal sistema, organizzate in una struttura gerarchica che riflette I'organizzazione dei
file sul filesystem.

Ogni storia puo essere espansa per visualizzarne i contenuti interni, come ca-
pitoli, summary e file di validazione. Questa rappresentazione gerarchica consente
all’'utente di comprendere immediatamente le relazioni tra i diversi elementi narrativi
e di accedere rapidamente alle informazioni di interesse.

107

A livello implementativo il pannello e stato progettato come di seguito:

« un Widget Blueprint principale, responsabile della struttura generale;
» una serie di widget entry, utilizzati per rappresentare i singoli elementi storie;

e logica C++ di supporto per la gestione dei file.

Ogni storia generata viene salvata su disco in una cartella dedicata, contenente
i diversi file JSON prodotti durante gli step (struttura, capitoli, summary, valida-
zioni). Il pannello Stories esegue una scansione di queste cartelle e costruisce una
vista gerarchica, permettendo all'utente di distinguere le singole storie , espande-
re o comprimere le varie cartelle e selezionare i vari file specifici di ogni storia per
I’analisi

5.9.5 Widget di riga e interazione

Ogni elemento visualizzato nel pannello Stories ¢ rappresentato da un Widget Blue-
print dedicato, responsabile della gestione dell’interazione utente. Il widget di riga
controlla lo stato di espansione e compressione dei nodi, aggiornando dinamicamente
I'interfaccia e le icone associate. La logica di visualizzazione & basata su uno stato
interno che determina la visibilita dei figli e il tipo di icona mostrata.

Le operazioni piu complesse, come 'apertura di cartelle nel filesystem o la lettura
dei file JSON, non vengono eseguite direttamente all’interno del widget Blueprint,
ma delegate a funzioni implementate in C++ ed esposte ai Blueprint. Questa scelta
permette di mantenere i widget leggeri e focalizzati esclusivamente sull’interazione.

5.9.6 Visualizzazione dei JSON

Per I'analisi dei contenuti generati dal backend ¢ stato integrato un visualizzato-
re JSON. I file prodotti presentano strutture annidate e complesse, che rendono
inefficace una semplice visualizzazione testuale. Il visualizzatore consente invece di
esplorare il JSON in maniera strutturata, evidenziando chiavi, valori e tipologie di
dato attraverso una codifica cromatica.

Dal punto di vista tecnico, il JSON viene letto da file tramite C++, convertito in
una struttura gerarchica e visualizzato mediante widget Slate personalizzati, tramite
apposito script C++. Questa soluzione consente un’analisi approfondita dei capitoli,
delle connessioni narrative e dei summary generati.

5.9.7 Gestione del ciclo di vita e delle operazioni asincrone

Poiché alcuni step di generazione possono richiedere diversi minuti (o ore), il front-
end ¢ stato progettato per inviare richieste non bloccanti e interrompere corretta-
mente le richieste nel momento in cui il widget viene chiuso.

108

Quando I'utente chiude la finestra del tool o preme sull’apposito pulsante di stop,
vengono:

o fermati i timer di polling;
 inviati eventuali segnali di cancellazione al backend;

« rilasciate le risorse del widget.

EUW Stori nel x
GENERATED STORIES Dust Tornado - story.json
Refresh
“wCosmic Loop Open Folder
chapters.json Open Json
story.json Open Json
structure.json Open Json
summary.json Open Json
‘wDeep Lost Open Folder
W Dust Tornado Open Folder
chapters.json Open Json
story.json Open Json

story_validated.json Open Json

structure.json Open Json

W Great Escape Open Folder
W Loop Magic Open Folder

“w Neon City Open Folder

Figura 16: Story Manage Ul

109

110

Capitolo 6

Analisi dei feedback e valutazione
sperimentale del sistema

6.1 Introduzione alla fase di valutazione

Per valutare 'efficacia del sistema di generazione automatica di storie videoludiche ¢
stata condotta una fase di testing qualitativo e quantitativo, coinvolgendo utenti con
differenti livelli di esperienza nel settore videoludico e nella scrittura narrativa. L’o-
biettivo principale di questa fase non era misurare esclusivamente la qualita letteraria
delle storie generate, ma comprendere il valore reale dello strumento come supporto
al processo creativo, in relazione agli obiettivi descritti nei capitoli precedenti.

I feedback sono stati raccolti tramite un questionario strutturato, composto da
sezioni dedicate a:

o profilo ed esperienza degli utenti;

o usabilita dell’interfaccia;

o qualita percepita delle storie generate;

« affidabilita dello strumento come supporto creativo;
 integrazione del sistema in una pipeline reale di sviluppo.

I risultati presentati in questo capitolo costituiscono una validazione empirica
delle scelte architetturali, metodologiche e progettuali adottate nel sistema.

111

6.2 Profilo dei partecipanti

Il campione coinvolto nella sperimentazione presenta una composizione eterogenea,
comprendente:

o game developer e aspiranti sviluppatori;

o utenti con esperienza nell’'uso di strumenti di intelligenza artificiale per la
scrittura;

e gamer con interesse per la narrazione interattiva;
» utenti con livelli diversi di esperienza nella scrittura di storie per videogiochi.

Questa varieta ha permesso di raccogliere feedback da prospettive differenti,
sia tecniche sia creative, rendendo ’analisi piu rappresentativa degli scenari di uti-
lizzo reali del sistema. I dati mostrano una prevalenza di utenti con esperienza
medio-bassa nella scrittura narrativa videoludica, aspetto particolarmente rilevante
in quanto il sistema ¢ stato progettato anche come strumento di supporto per utenti
non esperti.

Hai gia esperienza con: (seleziona tutte le opzioni rilevanti)

15 risposte

@ Scrittura narrativa

@ Game design / narrativa videoludica
Utilizzo di tool Al per scrittura/narrazione

@ Game Developer

@ Gamer

| 4

Figura 17: Personal data for testing

112

6.3 Usabilita dell’interfaccia e flusso di utilizzo

Una prima area di analisi riguarda la facilita di utilizzo del sistema e la chiarez-
za dell’interfaccia sviluppata in Unreal Engine. I feedback raccolti indicano una
valutazione complessivamente positiva su aspetti quali:

o semplicita di configurazione dei prompt e dei parametri di generazione;
« comprensibilita della suddivisione in step della pipeline narrativa;

o chiarezza dei feedback visivi forniti durante ’esecuzione;

« facilita di navigazione tra storie, capitoli e file di output.

Gli utenti hanno apprezzato in particolare la distinzione esplicita tra i diversi
step del processo (struttura, capitoli, storia, validazione), che riflette fedelmente la
logica descritta nei capitoli di implementazione. Questa separazione ha contribuito
a rendere il sistema percepito come controllabile e trasparente, riducendo 'effetto
di “scatola nera” tipico di molti strumenti basati su Al.

Alcuni feedback suggeriscono possibili miglioramenti, principalmente legati a:

e una maggiore evidenziazione dello stato dei job in esecuzione;
e un’organizzazione ancora piu gerarchica dei contenuti narrativi;
o strumenti aggiuntivi di confronto tra versioni della storia.

Tali osservazioni risultano coerenti con la complessita crescente dei contenuti
generati e rappresentano indicazioni utili per sviluppi futuri del front-end.

113

La selezione della complessita & utile per controllare la storia

15 risposte
15
12 (B0%)
10
5
el =
0 (0%) 0 (0%) 0(0%) 3 (20%)
0 | | |
1 2 3 4 5

Gli step di generazione sono chiari da comprendere

15 risposte

10,0

9 (60%)

75

50
\ 5(33,3%)

25
o(tl)%] 0 (0%)

0.0

Figura 18: Interface usability

114

6.4 Qualita percepita delle storie generate

Un aspetto centrale dell’analisi riguarda la qualita narrativa delle storie prodotte
dal sistema. I partecipanti hanno valutato positivamente la capacita del sistema di:

o generare strutture narrative solide;

e mantenere una progressione logica tra capitoli;

o costruire archi narrativi comprensibili;

« fornire una base narrativa coerente su cui lavorare.

E emerso chiaramente che la storia generata non viene percepita come un prodot-
to finale pronto per la pubblicazione, ma come una bozza narrativa avanzata, utile
soprattutto nelle fasi di brainstorming, pre-produzione e prototipazione. Questo ri-
sultato ¢ in linea con gli obiettivi dichiarati del sistema, che non mira a sostituire il
lavoro dell’autore umano, ma ad accelerarne e supportarne il processo creativo.

Alcuni utenti hanno segnalato una tendenza a pattern narrativi ricorrenti, in par-
ticolare nei capitoli intermedi o nei finali, evidenziando un limite intrinseco dei mo-
delli linguistici utilizzati. Tuttavia, tali criticita sono state spesso mitigate quando
la struttura iniziale risultava sufficientemente dettagliata, confermando I'importanza
della pipeline multi-step adottata.

115

Il livello di dettaglio & adeguato per una storia videoludica

15 risposte

8(53,3%)

5 (33,3%)

2{13,3%)

0 (Cli%] 0(0%])

Riesco a immaginare meccaniche di gioco o missioni dalla storia

15 risposte

15

10 11 {73,3%)

5

3 (20%; 1(6,7%)
0 (0%) 0(0%) :)
0 | |
1 2 3 4 5

Figura 19: Story quality

116

La scrittura del capitolo & chiara e scorrevole |_|:I Copia grafico

15 risposte

10,0

10 (66,7%)

75

5.0

25 3 (20%)

0{0%]) i] (:l)%] 2 {13,3%)

0,0 |

Il capitolo contiene scene adatte al gameplay |_|:I Copia grafico

15 risposte

10,0

9 (60%)

75

50 6 (40%)
25

0 (0%) 0 (0%) 0 (0%)
0,0 | I

Figura 20: Story gameplay flow

117

6.5 Affidabilita dello strumento come supporto
creativo

Un indicatore particolarmente significativo riguarda il livello di fiducia degli utenti
nel sistema come generatore di bozze narrative. La maggior parte dei partecipanti
ha espresso una fiducia medio-alta nell’utilizzo dello strumento per:

o esplorare idee narrative alternative;

o strutturare rapidamente una trama;

« individuare potenziali sviluppi narrativi;
e supportare la scrittura collaborativa.

La fiducia risulta invece piu cauta nel considerare il sistema come unica fonte nar-
rativa, sottolineando ancora una volta il ruolo dell’Al come co-autore e non come
autore autonomo. Questo dato conferma la validita dell’approccio ibrido adotta-
to, che combina struttura formale, validazione automatica e generazione linguistica
controllata.

118

La struttura generata fornisce una buona base di lavoro |_|:| Copia grafico

15 risposte

15

10 11 (73,3%)

0 (tl}%l 0 (ﬂl)%l 2 {13,3%) 2 {13,3%)

Lo strumento riduce il tempo necessario per una bozza narrativa |_|:| Copia grafico

15 risposte

15

10 11(73.3%)

1(6,7%) 3 (20%)

0 (?%] 0 (?%]

Figura 21: Creative support usability

6.6 Integrazione in una pipeline reale di sviluppo

Un’ulteriore sezione del questionario ha identificato la possibilita di utilizzo del si-
stema in una pipeline reale di sviluppo videoludico. Molti utenti hanno dichiarato
che utilizzerebbero il sistema in contesti reali, in particolare:

e nella fase di ideazione iniziale;
e durante la definizione della struttura narrativa;
e come strumento di supporto per narrative designer in fasi iniziali;

e per la verifica preliminare della coerenza di una storia complessa.

119

Quanto ti fideresti dello strumento generare una bozza narrativa?

15 risposte

15

12 (80%)

10

0 (?%] 0 (?%] 2(13,3%)

Useresti il sistema in una pipeline reale di sviluppo?

15 risposte

® s
@ No
@ Forse

Figura 22: Usability in working environment
Coloro che hanno espresso incertezza o riserve hanno indicato come possibili
miglioramenti:
e una maggiore personalizzazione dello stile narrativo;
o un controllo piu granulare sui vincoli di generazione;
» strumenti avanzati di editing e revisione.

Questi feedback rafforzano 'idea che il sistema possa trovare una collocazione
concreta nel workflow produttivo, soprattutto se integrato con strumenti gia esistenti
e arricchito da funzionalita di editing avanzato.

120

6.7 Criticita emerse e limiti del sistema
I partecipanti hanno segnalato alcune criticita, riconducibili principalmente a:
o ambiguita nei prompt iniziali;
« difficolta del modello nel mantenere coerenza su catene narrative molto lunghe;
« descrizione talvolta superficiale di elementi secondari;
e limiti computazionali dei modelli Al utilizzati.

E importante sottolineare come molte di queste criticita siano coerenti con i limi-
ti attualmente noti dei modelli linguistici di grandi dimensioni. Diversi utenti hanno
osservato che I'introduzione dei moduli di validazione migliora sensibilmente la qua-
lita complessiva, suggerendo che 'approccio multi-step con controllo automatico
rappresenti una direzione promettente.

In guali fasi ti senti limitato o confuso?

15 risposte

Non mi sono sentito limitato; tuttavia, all'inizio potrebbe essere utile una guida sulla scelta della
complessita e sul collegamento delle sotto-missioni.

un po’ di confusione nella descrizione di alcuni dettagli

A volte nella scelta della complessita e nella gestione dei sotto-ohiettivi mi sento un po’ limitato o confusog;
avere suggerimenti pit chiari aiuterebbe.

Durante la scelta della complessita e nella definizione dei sottobiettivi, alcune istruzioni non sono chiare.
definizione degli eventi di transizione

nessuna

Mi sono sentito limitato durante la selezione della complessita e quando definivo i sottobiettivi della storia.

gestione dei dettagli

Figura 23: Feedback users

121

6.8 Sintesi dei risultati

Nel complesso, i feedback raccolti confermano che il sistema:
« fornisce un supporto concreto al processo creativo;
« migliora la gestione della complessita narrativa;
 favorisce la prototipazione rapida di storie videoludiche;
« risulta comprensibile e utilizzabile anche da utenti non esperti.

La sperimentazione dimostra che 'approccio adottato, basato su una pipeli-
ne narrativa strutturata e sull’uso controllato dell’intelligenza artificiale generativa,
rappresenta una soluzione efficace e praticabile per la progettazione narrativa nei
videogiochi moderni.

6.9 Discussione critica dei risultati

L’analisi dei feedback raccolti consente di trarre una serie di considerazioni critiche
sull’efficacia del sistema, sui suoi limiti strutturali e sulle potenzialita future. I risul-
tati ottenuti mostrano una sostanziale coerenza tra gli obiettivi progettuali iniziali
e l'esperienza d’uso percepita dagli utenti, confermando la validita dell’approccio
metodologico adottato.

Un primo elemento di rilievo riguarda la scelta di strutturare il processo di ge-
nerazione narrativa come una pipeline multi-step. I feedback indicano chiaramente
che la suddivisione in fasi distinte (struttura, capitoli, storia dettagliata, validazione)
non solo migliora la qualita complessiva della narrazione, ma contribuisce anche a
rendere il sistema piu comprensibile e controllabile. Questo aspetto risulta partico-
larmente importante in un contesto in cui i modelli di intelligenza artificiale tendono
a essere percepiti come "black box". La possibilita di intervenire su ogni livello della
generazione riduce tale opacita e rafforza la fiducia dell’'utente nel sistema.

Dal punto di vista narrativo, i risultati confermano che i modelli Al, se guidati
da strutture formali e vincoli espliciti, sono in grado di produrre contenuti coerenti
e funzionali allo scopo. Tuttavia, emerge con chiarezza che la qualita della storia di-
pende fortemente dalla solidita della struttura iniziale. Le storie che partono da una
struttura ben definita risultano piu consistenti, mentre strutture vaghe o eccessiva-
mente generiche tendono a produrre narrazioni piu ripetitive o meno caratterizzate.
Questo dato rafforza l'idea che il valore del sistema risieda nell’integrazione tra
controllo umano e generazione automatica, piuttosto che in una delega totale alla
macchina.

Un altro aspetto critico riguarda il ruolo del sistema come strumento di supporto
creativo. I feedback indicano che il sistema viene percepito come particolarmente

122

utile nelle fasi di brainstorming, prototipazione e pre-produzione, mentre viene con-
siderato meno adatto come generatore di contenuti finali pronti per 1'uso diretto.
Questa distinzione e significativa, poiché conferma che I’Al non sostituisce il lavoro
del narrative designer, ma ne amplia le capacita, riducendo il tempo necessario per
esplorare alternative narrative e strutturare una storia complessa.

Dal punto di vista dell’interfaccia e dell’esperienza utente, l'integrazione con
Unreal Engine si e rivelata una scelta efficace. La possibilita di visualizzare storie,
capitoli e strutture narrative direttamente all’interno di un ambiente familiare per
il game designer migliora ’accessibilita dello strumento e ne favorisce I’adozione in
contesti reali. Tuttavia, alcuni feedback suggeriscono che 'aumento della complessi-
ta narrativa richiede strumenti di visualizzazione e navigazione ancora piu avanzati,
evidenziando una naturale tensione tra semplicita dell’interfaccia e ricchezza dei
contenuti.

Per quanto riguarda i limiti del sistema, le criticita emerse sono in gran parte
riconducibili alle limitazioni attuali dei modelli linguistici di grandi dimensioni. In
particolare, la difficolta nel mantenere coerenza su archi narrativi molto lunghi e la
tendenza a riutilizzare schemi narrativi ricorrenti rappresentano problemi noti nella
letteratura sull’Al generativa. L’introduzione dei moduli di validazione (Label Vali-
dator e Flow Validator) ha dimostrato di poter mitigare parzialmente tali problemi,
suggerendo che un’ulteriore evoluzione del sistema dovrebbe puntare su meccanismi
di controllo e revisione sempre piu sofisticati.

In sintesi, la fase di valutazione conferma che il sistema sviluppato raggiunge
gli obiettivi prefissati, offrendo uno strumento concreto, flessibile e utilizzabile per
la progettazione narrativa videoludica. I feedback raccolti forniscono anche indica-
zioni preziose per future evoluzioni, evidenziando come la combinazione tra strut-
ture narrative formali e intelligenza artificiale generativa rappresenti una direzione
promettente per il futuro dello storytelling interattivo.

123

124

Capitolo 7

Conclusioni finali e sviluppi futuri

7.1 Conclusioni finali

Il lavoro presentato in questa tesi ha affrontato il tema della generazione automatica
di storie videoludiche attraverso 1'utilizzo di modelli di intelligenza artificiale gene-
rativa, con 1'obiettivo di progettare e realizzare un sistema capace di supportare il
lavoro di game designer e narrative designer nelle fasi di ideazione, strutturazione e
analisi della narrativa.

A partire da un’analisi dello stato dell’arte sullo storytelling interattivo e sulle
metodologie narrative adottate nell’industria videoludica, il progetto ha messo in
evidenza una problematica centrale: la crescente complessita delle storie moderne
rende sempre piu difficile mantenere coerenza, controllo e varieta narrativa lungo
archi di gioco estesi. In questo contesto, 'intelligenza artificiale non e stata concepita
come un sostituto dell’autore umano, ma come uno strumento di supporto capace
di amplificarne le capacita creative e di ridurre il carico operativo nelle fasi piu
ripetitive o strutturali del processo.

Il sistema sviluppato si fonda su un approccio ibrido che combina strutture nar-
rative formali con la flessibilita dei modelli linguistici di grandi dimensioni. La scelta
di suddividere la generazione in una pipeline multi-step si e rivelata determinante per
garantire controllo, trasparenza e qualita del risultato finale. Ogni fase della pipeline
affronta un livello differente della narrazione, permettendo di gestire separatamente
struttura, capitoli, testo narrativo e validazione, riducendo la propagazione degli
errori e migliorando la coerenza complessiva.

Dal punto di vista implementativo, 1’adozione di un’architettura client—server
modulare ha consentito di separare chiaramente la logica computazionale dalla vi-
sualizzazione e dall’interazione con l'utente. L’integrazione con Unreal Engine ha
dimostrato come il sistema possa essere inserito efficacemente in un contesto di
sviluppo videoludico reale, fornendo strumenti di analisi e ispezione direttamente
all’interno di un ambiente familiare per i designer.

125

I feedback raccolti durante la fase di sperimentazione confermano la validita del-
I’approccio adottato. Gli utenti hanno riconosciuto nel sistema un valido strumento
di supporto creativo, particolarmente efficace nelle fasi di brainstorming, prototipa-
zione e definizione preliminare della narrativa. Allo stesso tempo, sono emersi limiti
legati alla gestione di archi narrativi molto complessi e alla tendenza dei model-
li generativi a riproporre pattern ricorrenti, criticita che riflettono limiti noti delle
tecnologie attuali.

Nel complesso, il progetto dimostra che la combinazione tra strutture narrative
controllate e intelligenza artificiale generativa rappresenta una direzione concreta
e promettente per lo sviluppo di strumenti a supporto dello storytelling videoludi-
co. Il sistema non intende automatizzare completamente la scrittura, ma offrire un
ambiente di lavoro ibrido in cui autore e macchina cooperano nella costruzione di
esperienze narrative piu ricche, flessibili e adattabili.

7.2 Sviluppi futuri

Sebbene il sistema sviluppato raggiunga gli obiettivi prefissati, numerose possibilita
di estensione e miglioramento emergono naturalmente dall’analisi dei risultati e dei
feedback raccolti.

Un primo ambito di sviluppo riguarda il potenziamento dei meccanismi di va-
lidazione. L’introduzione di moduli piu avanzati per il controllo della coerenza
temporale, delle relazioni e dell’evoluzione dei personaggi potrebbe migliorare ulte-
riormente 'affidabilita delle storie generate, soprattutto in contesti narrativi molto
estesi o fortemente ramificati.

Un secondo possibile sviluppo concerne l'integrazione di modelli linguistici piu
avanzati o specializzati, in grado di mantenere una memoria narrativa pitt profonda
e di gestire archi di lunga durata con maggiore precisione. L’adozione di modelli
futuri con capacita contestuali estese potrebbe ridurre significativamente alcune delle
criticita riscontrate durante la sperimentazione.

Dal punto di vista funzionale, il sistema potrebbe essere esteso per supportare ul-
teriori forme di contenuto narrativo, come dialoghi ramificati, sistemi di scelte morali
pit complesse, eventi dinamici o strutture procedurali adattive basate sul comporta-
mento del giocatore. Queste estensioni permetterebbero di avvicinare ulteriormente
il sistema alle esigenze di produzioni videoludiche su larga scala.

Un ulteriore sviluppo interessante riguarda l'integrazione diretta con prototipi di
gameplay. Collegare la generazione narrativa a sistemi ludici simulati o a prototipi
interattivi consentirebbe di valutare non solo la coerenza della storia, ma anche il
suo impatto sull’esperienza di gioco, rafforzando il legame tra narrativa e gameplay.

Infine, il sistema potrebbe evolversi in una piattaforma collaborativa, in cui piu
utenti possano lavorare simultaneamente sulla stessa storia, confrontando varianti
narrative, annotando modifiche e iterando collettivamente sul contenuto generato.

126

In conclusione, questo lavoro rappresenta un primo passo verso la costruzione di
strumenti intelligenti per lo storytelling videoludico, capaci di coniugare rigore strut-
turale e creativita generativa. L’evoluzione delle tecnologie di intelligenza artificiale,
unita a una progettazione narrativa consapevole, apre prospettive significative per
il futuro del game design e della narrazione interattiva.

127

128

Capitolo 8
Appendice

129

130

Bibliografia

[11]

[12]

Robert Denton Bryant and Keith Giglio. Slay the Dragon: Writing Great Video
Games. St. Martin’s Press, 2015.

Janet H. Murray. Hamlet on the Holodeck: The Future of Narrative in
Cyberspace. MIT Press, 1997.

Michael Mateas and Andrew Stern. Facade: An experiment in building a fully-
realized interactive drama. In Game Developers Conference, 2003.

Marco Guarneri. Ghost: A ghost story writer. Master’s thesis, Universita degli
Studi di Milano, 2016.

William Wallace Cook. Plotto: The Master Book of All Plots. Ellis Publishing
Company, 1928.

TV Tropes. Periodic table of storytelling. https://tvtropes.org, 9999.

Roy T. Fielding. Architectural styles and the design of network-based software
architectures. Doctoral dissertation, University of California, Irvine, 2000.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 3rd edition, 2012.

Tom B. et al. Brown. Language models are few-shot learners. Advances in
Neural Information Processing Systems, 33:1877-1901, 2020.

Joseph Campbell. The Hero with a Thousand Faces. Pantheon Books, New
York, 1949.

Aristotle. Poetics (translated by s. h. butcher). Online text, 1895.

Vladimir Propp. Morphology of the Folktale. University of Texas Press, Austin,
2 edition, 1968. Translated by Laurence Scott; revised and edited by Louis A.
Wagner.

131

https://tvtropes.org

[13]

[14]

Henry Jenkins. Game design as narrative architecture. In Noah Wardrip-Fruin

and Pat Harrigan, editors, First Person: New Media as Story, Performance,
and Game. MIT Press, Cambridge, MA, 2004.

Gonzalo Frasca. Ludologists love stories, too: Notes from a debate that never
took place. In Mark J. P. Wolf and Bernard Perron, editors, The Video Game
Theory Reader. Routledge, New York, 2003.

Jesse Schell. The Art of Game Design: A Book of Lenses. A K Peters/CRC
Press, Boca Raton, FL, 3 edition, 2019.

Nevigo. articy:draft documentation / product overview. Online documentation,
2025.

Python Software Foundation. Python 3 documentation. Online documentation,
2025.

Epic Games. Unreal engine documentation. Online documentation, 2025.
Google. Gemini model documentation. Online documentation, 2025.

Epic Games. Unreal motion graphics (umg) ui designer documentation. Online
documentation, 2025.

ufna. Varest plugin for unreal engine. Project page / repository, 2025.

132

	Introduzione e riassunto
	Introduzione generale
	Stato dell’arte e motivazioni
	Architettura generale del sistema
	Obiettivi del lavoro
	Obiettivi di ricerca e sperimentazione
	Obiettivi implementativi
	Obiettivi qualitativi e progettuali
	Sintesi finale degli obiettivi

	Risultati e feedback
	Conclusione

	Contesto e stato dell’arte
	Lo storytelling: definizione e ruolo nella comunicazione umana
	Aristotele e le origini della teoria della narrativa
	Da Campbell a Propp: archetipi e strutture ricorrenti

	La narrazione videoludica nella letteratura scientifica
	Evoluzione dello storytelling nei videogiochi
	Le origini: narrazione minimale (anni ’70–’80)
	Gli anni ’90: l’ingresso della narrativa cinematografica
	La maturità narrativa dei 2000: interattività, scelte e moralità
	2010–2020: la fusione tra gameplay e narrazione
	Oggi: mondi narrativi complessi e sistemi intelligenti

	Metodologie e tecnologie utilizzate
	Metodologie attuali per generare storie videoludiche
	Concept narrativo e definizione della visione
	La writers’ room e la costruzione della macro-struttura narrativa
	Il Narrative Design Document
	Strutture ramificate e gestione della complessità narrativa
	Iterazione, playtesting e riscrittura
	Scalabilità narrativa e complessità produttiva

	La nuova frontiera: l’intelligenza artificiale nello storytelling videoludico
	AI come strumento creativo per autori e game designer
	Strumenti ibridi: combinare strutture formali e AI generativa

	Introduzione al sistema sviluppato
	Architettura generale del sistema
	Backend del sistema: tecnologie e metodologia di funzionamento
	Tecnologie utilizzate
	Gestione delle risorse narrative strutturate
	Sistema di embedding e model recognition
	Pipeline narrativa multi-step
	Sistema a thread e gestione asincrona dei job
	Comunicazione tramite REST API

	Frontend: Unreal Engine e interfaccia utente
	Tecnologie utilizzate in Unreal Engine
	Comunicazione con il backend tramite REST API
	Interfaccia utente (UI/UX)
	Visualizzazione dei risultati

	Modelli AI e strategie di prompting
	Modello AI utilizzato
	Prompt engineering
	Controllo del contesto e gestione della coerenza
	Ruolo del modello AI nel sistema

	Analisi del problema e del design del sistema
	Introduzione al problema
	Complessità narrativa e struttura del grafo
	Grafo semplice vs grafo complesso
	Impatto della complessità sulla coerenza narrativa

	Difficoltà nella generazione di storie complesse e logicamente coerenti
	Caratterizzazione e stabilità dei personaggi
	Scalabilità della narrazione
	Sensibilità del modello al prompting
	Differenziazione delle storie generate

	Limitazioni tecnologiche dei modelli AI generativi
	Limiti dei LLM nel ragionamento a lungo termine
	Lentezza e costi computazionali
	Necessità del sistema a step
	Dipendenza dalle tecnologie disponibili

	Problematiche del prompting
	Sensibilità dei modelli al prompt
	Differenziazione degli aspetti narrativi
	Impatto sul design dell’intero sistema

	Problemi di coerenza interna
	Il ruolo dei validatori nella gestione della coerenza

	Limiti di utilizzo del sistema
	Focalizzazione sui videogiochi story-driven
	Dipendenza dalla qualità dei documenti di supporto

	Complessità e prestazioni del sistema
	Complessità computazionale delle pipeline multi-step
	Responsività del sistema e percezione dell’utente

	Necessità della suddivisione in step
	Complessità crescente e impossibilità della generazione monolitica
	Controllo della narrazione a livelli diversi
	Riduzione degli errori tramite generazione progressiva
	Maggiore flessibilità e adattabilità
	Riduzione del carico cognitivo del modello AI

	Implementazione del sistema
	Introduzione
	Descrizione generale del sistema
	Backend
	Frontend

	Diagramma dell’architettura del sistema
	Livello Backend
	Livello Frontend
	Flusso dei dati

	Implementazione dello Step 1: Generazione della struttura narrativa
	Come viene generata una struttura narrativa
	Logica implementativa e flusso operativo
	Struttura dei file narrativi: Story, Characters e Cards
	Costruzione del prompt
	Il ruolo del livello di complessità
	Struttura a tre atti e tipologie di nodi narrativi
	Generazione della struttura narrativa: funzionamento, logica e output

	Implementazione dello Step 2: Generazione dei capitoli narrativi
	Logica implementativa
	Costruzione del prompt
	Utilizzo della NAP Policy: Encounter Plan e Chapter Adapt

	Implementazione dello Step 3: Generazione della storia dettagliata
	Logica implementativa
	Costruzione del prompt
	Beat narrativi e ruolo degli encounter

	Implementazione dello Step 4: validazione e correzione automatica
	Logica implementativa
	Label Validator
	Flow Validator
	File di report e risultato finale

	Implementazione dello step 5: Generazione sintesi
	Logica implementativa e funzionamento
	Costruzione del prompt
	Descrizione output

	Implementazione UI/UX Unreal Engine
	Struttura generale del front-end
	Editor Utility Widget principale
	Interfaccia di generazione della storia
	Pannello Stories
	Widget di riga e interazione
	Visualizzazione dei JSON
	Gestione del ciclo di vita e delle operazioni asincrone

	Analisi dei feedback e valutazione sperimentale del sistema
	Introduzione alla fase di valutazione
	Profilo dei partecipanti
	Usabilità dell’interfaccia e flusso di utilizzo
	Qualità percepita delle storie generate
	Affidabilità dello strumento come supporto creativo
	Integrazione in una pipeline reale di sviluppo
	Criticità emerse e limiti del sistema
	Sintesi dei risultati
	Discussione critica dei risultati

	Conclusioni finali e sviluppi futuri
	Conclusioni finali
	Sviluppi futuri

	Appendice
	Bibliografia

